Spaces:
Runtime error
Runtime error
File size: 18,566 Bytes
7a1c9b8 ab2028a a3ff20d b2112fe a09b6d4 a2cc35d 7a1263d e4660a4 32e0205 21b79b9 e4660a4 55b6a72 b2112fe 06a38bb a3ff20d 8001ff3 8761650 9b427c0 df15024 9b427c0 ed2227d e3fd3dc 9b427c0 8001ff3 ed2227d 434909e 8001ff3 a09b6d4 ff28ea7 06a38bb ff28ea7 f98abe0 8bb3175 7a50d25 e74a6d5 7a50d25 dec3ffb 7a50d25 dec3ffb 8bb3175 7a50d25 a3ff20d f98abe0 ca883bf f98abe0 662683c a3ff20d f98abe0 a2ef30f 29dc5a5 a2ef30f f49c4dc d4b4467 3c12ec8 d4b4467 0cd86bb 3c12ec8 e71a574 3c12ec8 92bdd1d f1d9431 72edae7 3f84de1 3c12ec8 cdd7baf 3c12ec8 cdd7baf 3c12ec8 8750972 3c12ec8 8750972 3c12ec8 8750972 3c12ec8 3f84de1 3c12ec8 3f84de1 3c12ec8 d4b4467 a2cc35d 06a38bb ff28ea7 a3ff20d ff28ea7 a3ff20d ff28ea7 a3ff20d 06a38bb e4660a4 ff28ea7 a3ff20d ff28ea7 06a38bb ff28ea7 7d98fee ff28ea7 55b6a72 ff28ea7 a3ff20d b6dfb48 700258a 8e5029d 5b25129 8e5029d 23028aa 8e5029d 5b25129 23028aa 8e5029d 8f67fbb 8e5029d 5b25129 23028aa 8e5029d 700258a a3ff20d ff28ea7 55b6a72 f49c4dc 714d3fb e074b34 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 2bf93a0 a162b85 da4372a d945d64 da4372a f49c4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import os
import streamlit as st
import json
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.animation as animation
import time
from PIL import Image
from streamlit_image_comparison import image_comparison
import numpy as np
#import chromadb
from textwrap import dedent
import google.generativeai as genai
api_key = os.environ["OPENAI_API_KEY"]
from openai import OpenAI
oai_client = OpenAI()
import numpy as np
# Assuming chromadb and TruLens are correctly installed and configured
#from chromadb.utils.embedding_functions import
# Google Langchain
from langchain_google_genai import GoogleGenerativeAI
#Crew imports
from crewai import Agent, Task, Crew, Process
# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')
# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")
# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)
# CrewAI ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def crewai_process_gemini(research_topic):
# Define your agents with roles and goals
GeminiAgent = Agent(
role='Story Writer',
goal='To create a story from bullet points.',
backstory="""You are an expert writer that understands how to make the average extraordinary on paper """,
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
)
# Create tasks for your agents
task1 = Task(
description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point
and make sure you have a transitional statement between scenes . BE VERBOSE.""",
agent=GeminiAgent
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[GeminiAgent],
tasks=[task1],
verbose=2,
process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
return result
# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from crewai.tools.mixtral_tools import MixtralSearchTools
from crewai.tools.zephyr_tools import ZephyrSearchTools
st.set_page_config(layout="wide")
# Animation Code +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Set up the duration for your animation
t0=0 # [hrs]
t_end=2 # [hrs]
dt=0.005 # [hrs]
# Create array for time
t=np.arange(t0,t_end+dt,dt)
frame_amount=len(t)
# Subplot 1
fig2=plt.figure(figsize=(16,9),dpi=120,facecolor=(0.8,0.8,0.8))
gs=gridspec.GridSpec(2,2)
ax0=fig2.add_subplot(gs[0,:],facecolor=(0.9,0.9,0.9))
box_object=dict(boxstyle='circle',fc=(0.1,0.9,0.9),ec='r',lw=10)
stopwatch0=ax0.text(1400,0.65,'',size=20,color='g',bbox=box_object)
def update_plot(num):
# 1st subplot
stopwatch0.set_text(str(round(t[num],1))+' hrs')
return stopwatch0,
# HIN Number +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from SPARQLWrapper import SPARQLWrapper, JSON
from streamlit_agraph import agraph, TripleStore, Node, Edge, Config
import json
# Function to load JSON data
def load_data(filename):
with open(filename, 'r') as file:
data = json.load(file)
return data
# Dictionary for color codes
color_codes = {
"residential": "#ADD8E6",
"commercial": "#90EE90",
"community_facilities": "#FFFF00",
"school": "#FFFF00",
"healthcare_facility": "#FFFF00",
"green_space": "#90EE90",
"utility_infrastructure": "#90EE90",
"emergency_services": "#FF0000",
"cultural_facilities": "#D8BFD8",
"recreational_facilities": "#D8BFD8",
"innovation_center": "#90EE90",
"elderly_care_home": "#FFFF00",
"childcare_centers": "#FFFF00",
"places_of_worship": "#D8BFD8",
"event_spaces": "#D8BFD8",
"guest_housing": "#FFA500",
"pet_care_facilities": "#FFA500",
"public_sanitation_facilities": "#A0A0A0",
"environmental_monitoring_stations": "#90EE90",
"disaster_preparedness_center": "#A0A0A0",
"outdoor_community_spaces": "#90EE90",
# Add other types with their corresponding colors
}
# Function to draw the grid with optional highlighting
def draw_grid(data, highlight_coords=None):
fig, ax = plt.subplots(figsize=(12, 12))
nrows, ncols = data['size']['rows'], data['size']['columns']
ax.set_xlim(0, ncols)
ax.set_ylim(0, nrows)
ax.set_xticks(range(ncols+1))
ax.set_yticks(range(nrows+1))
ax.grid(True)
# Draw roads with a specified grey color
road_color = "#606060" # Light grey; change to "#505050" for dark grey
for road in data.get('roads', []): # Check for roads in the data
start, end = road['start'], road['end']
# Determine if the road is vertical or horizontal based on start and end coordinates
if start[0] == end[0]: # Vertical road
for y in range(min(start[1], end[1]), max(start[1], end[1]) + 1):
ax.add_patch(plt.Rectangle((start[0], nrows-y-1), 1, 1, color=road['color']))
else: # Horizontal road
for x in range(min(start[0], end[0]), max(start[0], end[0]) + 1):
ax.add_patch(plt.Rectangle((x, nrows-start[1]-1), 1, 1, color=road['color']))
# Draw buildings
for building in data['buildings']:
coords = building['coords']
b_type = building['type']
size = building['size']
color = color_codes.get(b_type, '#FFFFFF') # Default color is white if not specified
if highlight_coords and (coords[0], coords[1]) == tuple(highlight_coords):
highlighted_color = "#FFD700" # Gold for highlighting
ax.add_patch(plt.Rectangle((coords[1], nrows-coords[0]-size), size, size, color=highlighted_color, edgecolor='black', linewidth=2))
else:
ax.add_patch(plt.Rectangle((coords[1], nrows-coords[0]-size), size, size, color=color, edgecolor='black', linewidth=1))
ax.text(coords[1]+0.5*size, nrows-coords[0]-0.5*size, b_type, ha='center', va='center', fontsize=8, color='black')
ax.set_xlabel('Columns')
ax.set_ylabel('Rows')
ax.set_title('Village Layout with Color Coding')
return fig
# Title ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Tabs +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Create the main app with three tabs
tab1, tab2, tab3 = st.tabs(["Introduction","Green Village", "Control Room"])
with tab1:
st.header("RAGE - A day in the Life of Aya City")
# Creating columns for the layout
col1, col2 = st.columns([1, 2])
# Displaying the image in the left column
with col1:
image = Image.open('./data/intro_image.jpg')
st.image(image, caption='Green Open Data City Aya')
# Displaying the text above on the right
with col2:
query = '''
On his first day at Quantum Data Institute in Green Open Data City Aya, Elian marveled at the city’s harmonious blend of technology and nature.
Guided to his mentor, Dr. Maya Lior, a pioneer in urban data ecosystems, their discussion quickly centered on Aya’s innovative design.
Dr. Lior explained data analytics and green technologies were intricately woven into the city's infrastructure, and how they used
a Custom GPT called Green Data City to create the design.
To interact with the Green Data City design tool click the button below.
'''
st.markdown(query)
# Displaying the audio player below the text
voice_option = st.selectbox(
'Choose a voice:',
['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']
)
if st.button('Convert to Speech'):
if query:
try:
response = oai_client.audio.speech.create(
model="tts-1",
voice=voice_option,
input=query,
)
# Stream or save the response as needed
# For demonstration, let's assume we save then provide a link for downloading
audio_file_path = "output.mp3"
response.stream_to_file(audio_file_path)
# Display audio file to download
st.audio(audio_file_path, format='audio/mp3')
st.success("Conversion successful!")
# Displaying the image with the same name as the selected scene
image_file_path = f"./data/{selected_scene}.jpg" # Adjust the directory as needed
try:
st.image(image_file_path, caption=f"Scene: {selected_scene}")
"""All images generated by Dall-E"""
except Exception as e:
st.error(f"An error occurred while displaying the image: {e}")
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.error("Please enter some text to convert.")
#st.audio('intro_audio.mp3')
st.header("Custom GPT Engineering Tools")
st.link_button("Create JSON Data for a Green Data Village Population 10,000", "https://chat.openai.com/g/g-4bPJUaHS8-create-a-green-data-village")
st.write("Explanation of the Custom GPT")
st.write("""
On clicking "Create Data Village" create a Green Data Village following the 4 Steps below. Output a JSON file similar to the Example by complete the four Steps.
To generate the provided JSON code, I would instruct a custom GPT to create a detailed description of a hypothetical smart city layout, named "Green Smart Village", with a population of 10,000. This layout should include a grid size of 21x21, a list of buildings and roads, each with specific attributes:
Step 1: General Instructions:
Generate a smart city layout for "Green Smart Village" with a 21x21 grid. Include a population of 10,000.
Step 2: Buildings:
For each building, specify its coordinates on the grid, type (e.g., residential, commercial, healthcare facility), size (in terms of the grid), color, and equipped sensors (e.g., smart meters, water flow sensors).
Types of buildings should vary and include residential, commercial, community facilities, school, healthcare facility, green space, utility infrastructure, emergency services, cultural facilities, recreational facilities, innovation center, elderly care home, childcare centers, places of worship, event spaces, guest housing, pet care facilities, public sanitation facilities, environmental monitoring stations, disaster preparedness center, outdoor community spaces, typical road, and typical road crossing.
Step 3: Assign each building unique sensors based on its type, ensuring a mix of technology like smart meters, occupancy sensors, smart lighting systems, and environmental monitoring sensors.
Step 4: Roads:
Detail the roads' start and end coordinates, color, and sensors installed.
Ensure roads connect significant areas of the city, providing access to all buildings. Equip roads with sensors for traffic flow, smart streetlights, and pollution monitoring. MAKE SURE ALL BUILDINGS HAVE ACCESS TO A ROAD.
This test scenario would evaluate the model's ability to creatively assemble a smart city plan with diverse infrastructure and technology implementations, reflecting real-world urban planning challenges and the integration of smart technologies for sustainable and efficient city management.
Example:
{
"city": "City Name",
"population": "Population Size",
"size": {
"rows": "Number of Rows",
"columns": "Number of Columns"
},
"buildings": [
{
"coords": ["X", "Y"],
"type": "Building Type",
"size": "Building Size",
"color": "Building Color",
"sensors": ["Sensor Types"]
}
],
"roads": [
{
"start": ["X Start", "Y Start"],
"end": ["X End", "Y End"],
"color": "Road Color",
"sensors": ["Sensor Types"]
}
]
}
""")
with tab2:
st.header("Green Smart Village Application")
# Divide the page into three columns
col1, col2, col3 = st.columns(3)
with col1:
st.header("Today's Agenda")
st.write("1. Morning Meeting\n2. Review Project Plans\n3. Lunch Break\n4. Site Visit\n5. Evening Wrap-up")
st.header("Agent Advisors")
st.write("Would you like to optimize your HIN number?")
# Selection box for the function to execute
process_selection = st.selectbox(
'Choose the process to run:',
('crewai_process_gemini', 'crewai_process_mixtral_crazy', 'crewai_process_mixtral_normal', 'crewai_process_zephyr_normal', 'crewai_process_phi2')
)
# Button to execute the chosen function
if st.button('Run Process'):
if research_topic: # Ensure there's a topic provided
if process_selection == 'crewai_process_gemini':
result = crewai_process_gemini(research_topic)
elif process_selection == 'crewai_process_mixtral_crazy':
result = crewai_process_mixtral_crazy(research_topic)
elif process_selection == 'crewai_process_mixtral_normal':
result = crewai_process_mixtral_normal(research_topic)
elif process_selection == 'crewai_process_zephyr_normal':
result = crewai_process_zephyr_normal(research_topic)
elif process_selection == 'crewai_process_phi2':
result = crewai_process_phi2(research_topic)
st.write(result)
else:
st.warning('Please enter a research topic.')
st.header("My Incentive")
st.write("Total incentive for HIN optimization")
with col2:
st.header("Green Smart Village Layout")
data = load_data('grid.json') # Ensure this path is correct
# Dropdown for selecting a building
building_options = [f"{bld['type']} at ({bld['coords'][0]}, {bld['coords'][1]})" for bld in data['buildings']]
selected_building = st.selectbox("Select a building to highlight:", options=building_options)
selected_index = building_options.index(selected_building)
selected_building_coords = data['buildings'][selected_index]['coords']
# Draw the grid with the selected building highlighted
fig = draw_grid(data, highlight_coords=selected_building_coords)
st.pyplot(fig)
# Assuming sensors are defined in your data, display them
sensors = data['buildings'][selected_index].get('sensors', [])
st.write(f"Sensors in selected building: {', '.join(sensors)}")
with col3:
st.header("Check Your HIN Number")
# config = Config(height=400, width=400, nodeHighlightBehavior=True, highlightColor="#F7A7A6", directed=True, collapsible=True)
if sensors: # Check if there are sensors to display
graph_store = TripleStore()
building_name = f"{data['buildings'][selected_index]['type']} ({selected_building_coords[0]}, {selected_building_coords[1]})"
# Iterate through each sensor and create a triple linking it to the building
for sensor in sensors:
sensor_id = f"Sensor: {sensor}" # Label for sensor nodes
# Correctly add the triple without named arguments
graph_store.add_triple(building_name, "has_sensor", sensor_id)
# Configuration for the graph visualization
agraph_config = Config(height=300, width=300, nodeHighlightBehavior=True, highlightColor="#F7A7A6", directed=True, collapsible=True)
# Display the graph
agraph(nodes=graph_store.getNodes(), edges=graph_store.getEdges(), config=agraph_config)
hin_number = st.text_input("Enter your HIN number:")
if hin_number:
st.write("HIN number details...") # Placeholder for actual HIN number check
with tab3:
st.header("Control Room")
st.write("Synthetic data should be used to drive control room")
"""
Smart meters
Water flow sensors
Temperature and humidity sensors
Occupancy sensors
HVAC control systems
Smart lighting
Security cameras
Indoor air quality sensors
Smart lighting systems
Energy consumption monitors
Patient monitoring systems
Environmental monitoring sensors
Energy management systems
Soil moisture sensors
Smart irrigation systems
Leak detection sensors
Grid monitoring sensors
GPS tracking for vehicles
Smart building sensors
Dispatch management systems
High-speed internet connectivity
Energy consumption monitoring
Smart security systems
Environmental control systems
Security systems
Smart HVAC systems
Smart locks
Water usage monitoring
Smart inventory management systems
Waste level sensors
Fleet management systems for sanitation vehicles
Air quality sensors
Weather stations
Pollution monitors
Early warning systems
Communication networks
Adaptive lighting systems
Traffic flow sensors
Smart streetlights
"""
"""
Animation Code ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
fig2=plt.figure(figsize=(16,9),dpi=120,facecolor=(0.8,0.8,0.8))
gs=gridspec.GridSpec(2,2)
stopwatch_ani=animation.FuncAnimation(fig2,update_plot,frames=frame_amount,interval=20,repeat=True,blit=True)
st.pyplot(fig2)
"""
|