Spaces:
Sleeping
Sleeping
File size: 8,306 Bytes
ba57c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import classification_report, accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
import numpy as np
# Global scaler and label encoder for consistent preprocessing
scaler = StandardScaler()
label_encoder = LabelEncoder()
feature_columns = None # To store feature columns from the training data
# Preload default files
DEFAULT_TRAIN_FILE = "patientdata.csv"
DEFAULT_PREDICT_FILE = "synthetic_breast_cancer_notreatmentcolumn.csv"
DEFAULT_LABEL_FILE = "synthetic_breast_cancer_data_withColumn.csv"
def main():
global feature_columns
st.title("Patient Treatment Prediction App")
st.write("Upload patient data to train a model and predict treatments based on input data.")
# Upload training data
uploaded_file = st.file_uploader("Upload a CSV file for training", type="csv")
if uploaded_file is None:
st.write("Using default training data.")
data = pd.read_csv(DEFAULT_TRAIN_FILE)
else:
data = pd.read_csv(uploaded_file)
st.write("Training Dataset Preview:", data.head())
# Check for Treatment column in training data
if 'Treatment' not in data.columns:
st.error("The training data must contain a 'Treatment' column.")
return
# Prepare Data
X, y, input_dim, num_classes, feature_columns = preprocess_training_data(data)
# Model Parameters
hidden_dim = st.slider("Hidden Layer Dimension", 10, 100, 50)
learning_rate = st.number_input("Learning Rate", 0.0001, 0.1, 0.01) # Default set to 0.01
epochs = st.number_input("Epochs", 1, 100, 20)
# Model training
if st.button("Train Model"):
model, loss_curve = train_model(X, y, input_dim, hidden_dim, num_classes, learning_rate, epochs)
plot_loss_curve(loss_curve)
# Upload data for prediction
st.write("Upload new data without the 'Treatment' column for prediction.")
new_data_file = st.file_uploader("Upload new CSV file for prediction", type="csv")
if new_data_file is None:
st.write("Using default prediction data.")
new_data = pd.read_csv(DEFAULT_PREDICT_FILE)
else:
new_data = pd.read_csv(new_data_file)
st.write("Prediction Dataset Preview:", new_data.head())
if 'model' in locals() and feature_columns is not None:
# Align columns to match training data
new_data_aligned = align_columns(new_data, feature_columns)
if new_data_aligned is not None:
predictions = predict_treatment(new_data_aligned, model)
# Display Predictions in an Output Box
st.subheader("Predicted Treatment Outcomes")
prediction_output = "\n".join([f"Patient {i+1}: {pred}" for i, pred in enumerate(predictions)])
st.text_area("Prediction Results", prediction_output, height=200)
# Compare predictions with actual labels
actual_data = pd.read_csv(DEFAULT_LABEL_FILE)
if 'Treatment' in actual_data.columns:
actual_labels = label_encoder.transform(actual_data['Treatment'])
evaluate_model_performance(predictions, actual_labels)
else:
st.error("Actual labels file must contain a 'Treatment' column.")
else:
st.error("Unable to align prediction data to the training feature columns.")
else:
st.warning("Please train the model first before predicting on new data.")
def preprocess_training_data(data):
global scaler, label_encoder
# Label encode the 'Treatment' target column
data['Treatment'] = label_encoder.fit_transform(data['Treatment'])
y = data['Treatment'].values
# Encode and standardize feature columns
X = data.drop('Treatment', axis=1)
feature_columns = X.columns # Store feature columns for later alignment
for col in X.select_dtypes(include=['object']).columns:
X[col] = LabelEncoder().fit_transform(X[col])
# Standardize features
X = scaler.fit_transform(X)
return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.long), X.shape[1], len(np.unique(y)), feature_columns
def align_columns(new_data, feature_columns):
# Ensure the new data has the same columns as the training data
missing_cols = set(feature_columns) - set(new_data.columns)
extra_cols = set(new_data.columns) - set(feature_columns)
# Remove any extra columns
new_data = new_data.drop(columns=extra_cols)
# Add missing columns with default value 0
for col in missing_cols:
new_data[col] = 0
# Reorder columns to match the training data
new_data = new_data[feature_columns]
# Encode and standardize feature columns
for col in new_data.select_dtypes(include=['object']).columns:
new_data[col] = LabelEncoder().fit_transform(new_data[col])
# Scale features
new_data = scaler.transform(new_data)
return torch.tensor(new_data, dtype=torch.float32)
def train_model(X, y, input_dim, hidden_dim, num_classes, learning_rate, epochs):
# Model Definition
class SimpleNN(nn.Module):
def __init__(self, input_dim, hidden_dim, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, num_classes)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# Model, loss, optimizer
model = SimpleNN(input_dim, hidden_dim, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Training
loss_curve = []
for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(X)
loss = criterion(outputs, y)
loss.backward()
optimizer.step()
loss_curve.append(loss.item())
return model, loss_curve
def plot_loss_curve(loss_curve):
plt.figure()
plt.plot(loss_curve, label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Loss Curve")
plt.legend()
st.pyplot(plt)
def predict_treatment(new_data, model, batch_size=32):
model.eval()
predictions = []
# Run predictions in batches for large datasets
with torch.no_grad():
for i in range(0, new_data.size(0), batch_size):
batch_data = new_data[i:i + batch_size]
outputs = model(batch_data)
_, batch_predictions = torch.max(outputs, 1)
predictions.extend(batch_predictions.numpy())
# Convert numeric predictions back to original label names
return label_encoder.inverse_transform(predictions)
def evaluate_model_performance(predictions, actual_labels):
# Ensure both predictions and actual_labels are consistently numeric
if isinstance(predictions[0], str):
actual_labels = label_encoder.inverse_transform(actual_labels)
elif isinstance(predictions[0], int):
actual_labels = label_encoder.transform(actual_labels)
# Calculate evaluation metrics
accuracy = accuracy_score(actual_labels, predictions)
precision = precision_score(actual_labels, predictions, average='weighted')
recall = recall_score(actual_labels, predictions, average='weighted')
f1 = f1_score(actual_labels, predictions, average='weighted')
# Display metrics
st.subheader("Model Evaluation Metrics")
st.write(f"**Accuracy:** {accuracy:.2f}")
st.write(f"**Precision:** {precision:.2f}")
st.write(f"**Recall:** {recall:.2f}")
st.write(f"**F1-Score:** {f1:.2f}")
# Confusion Matrix
cm = confusion_matrix(actual_labels, predictions)
st.subheader("Confusion Matrix")
plt.figure(figsize=(10, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
st.pyplot(plt)
if __name__ == "__main__":
main()
|