File size: 7,092 Bytes
1d766b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import pandas as pd
import numpy as np

# Seed for reproducibility
np.random.seed(42)

# Function to generate synthetic data
def generate_realistic_data(num_patients=100):
    # Initialize data lists
    patient_ids = []
    ages = []
    menopausal_status = []
    tumor_sizes = []
    lymph_nodes = []
    grades = []
    stages = []
    er_status = []
    pr_status = []
    her2_status = []
    ki67_level = []
    tnbc_status = []
    brca_mutation = []
    overall_health = []
    genomic_score = []
    treatment = []

    for i in range(num_patients):
        # Patient ID
        patient_id = i + 1
        patient_ids.append(patient_id)

        # Age
        age = int(np.random.normal(60, 10))
        age = max(30, min(age, 80))
        ages.append(age)

        # Menopausal Status
        menopausal = 'Post-menopausal' if age >= 50 else 'Pre-menopausal'
        menopausal_status.append(menopausal)

        # Tumor Size
        tumor_size = round(np.random.lognormal(mean=0.7, sigma=0.5), 2)
        tumor_sizes.append(tumor_size)

        # Lymph Node Involvement
        lymph_node = 'Positive' if (tumor_size > 2.0 and np.random.rand() < 0.6) or (tumor_size <= 2.0 and np.random.rand() < 0.3) else 'Negative'
        lymph_nodes.append(lymph_node)

        # Tumor Grade
        grade = np.random.choice([1, 2, 3], p=[0.1, 0.4, 0.5] if tumor_size > 2.0 else [0.3, 0.5, 0.2])
        grades.append(grade)

        # Tumor Stage
        if tumor_size <= 2.0 and lymph_node == 'Negative':
            stage = 'I'
        elif (tumor_size > 2.0 and tumor_size <= 5.0) and lymph_node == 'Negative':
            stage = 'II'
        elif lymph_node == 'Positive' or tumor_size > 5.0:
            stage = 'III'
        else:
            stage = 'II'
        if np.random.rand() < 0.05:
            stage = 'IV'
        stages.append(stage)

        # Hormone Receptor Status
        er = np.random.choice(['Positive', 'Negative'], p=[0.75, 0.25])
        pr = 'Positive' if er == 'Positive' and np.random.rand() > 0.1 else 'Negative'
        er_status.append(er)
        pr_status.append(pr)

        # HER2 Status
        her2 = np.random.choice(['Positive', 'Negative'], p=[0.3, 0.7] if grade == 3 else [0.15, 0.85])
        her2_status.append(her2)

        # Ki-67 Level
        ki67 = 'High' if grade == 3 and np.random.rand() < 0.8 else 'Low'
        ki67_level.append(ki67)

        # Triple-Negative Status
        tnbc = 'Positive' if er == 'Negative' and pr == 'Negative' and her2 == 'Negative' else 'Negative'
        tnbc_status.append(tnbc)

        # BRCA Mutation
        brca = 'Positive' if (tnbc == 'Positive' or age < 40) and np.random.rand() < 0.2 else 'Negative'
        brca_mutation.append(brca)

        # Overall Health
        health = 'Good' if age < 65 and np.random.rand() < 0.9 else 'Poor'
        overall_health.append(health)

        # Genomic Recurrence Score
        recurrence_score = np.random.choice(['Low', 'Intermediate', 'High'], p=[0.6, 0.3, 0.1]) if er == 'Positive' and her2 == 'Negative' else 'N/A'
        genomic_score.append(recurrence_score)

        # Treatment
        if stage in ['I', 'II']:
            if tnbc == 'Positive':
                treat = 'Surgery, Chemotherapy, and Radiation Therapy' + (', plus PARP Inhibitors' if brca == 'Positive' else '')
            elif er == 'Positive' and recurrence_score != 'N/A':
                if recurrence_score == 'High':
                    treat = 'Surgery, Chemotherapy, Hormone Therapy, and Radiation Therapy'
                elif recurrence_score == 'Intermediate':
                    treat = 'Surgery, Consider Chemotherapy, Hormone Therapy, and Radiation Therapy'
                else:
                    treat = 'Surgery, Hormone Therapy, and Radiation Therapy'
            elif her2 == 'Positive':
                treat = 'Surgery, HER2-Targeted Therapy, Chemotherapy, and Radiation Therapy'
            else:
                treat = 'Surgery, Chemotherapy, and Radiation Therapy'
        elif stage == 'III':
            treat = 'Neoadjuvant Chemotherapy, Surgery, Radiation Therapy' + (', HER2-Targeted Therapy' if her2 == 'Positive' else '') + (', Hormone Therapy' if er == 'Positive' else '')
        else:
            treat = 'Systemic Therapy (' + ', '.join([option for option in ['Hormone Therapy' if er == 'Positive' else '', 'HER2-Targeted Therapy' if her2 == 'Positive' else '', 'Chemotherapy' if tnbc == 'Positive' else ''] if option]) + '), Palliative Care' if health == 'Good' else 'Palliative Care Only'

        treatment.append(treat)

    # Create DataFrame
    data = {
        'Patient ID': patient_ids,
        'Age': ages,
        'Menopausal Status': menopausal_status,
        'Tumor Size (cm)': tumor_sizes,
        'Lymph Node Involvement': lymph_nodes,
        'Tumor Grade': grades,
        'Tumor Stage': stages,
        'ER Status': er_status,
        'PR Status': pr_status,
        'HER2 Status': her2_status,
        'Ki-67 Level': ki67_level,
        'TNBC Status': tnbc_status,
        'BRCA Mutation': brca_mutation,
        'Overall Health': overall_health,
        'Genomic Recurrence Score': genomic_score,
        'Treatment': treatment,
    }

    return pd.DataFrame(data)

# Function to generate fuzzy data
def generate_fuzzy_data(df, error_rate=0.1):
    fuzzy_df = df.copy()
    num_rows, num_cols = fuzzy_df.shape
    
    # Introduce errors
    for _ in range(int(num_rows * num_cols * error_rate)):
        row = np.random.randint(0, num_rows)
        col = np.random.randint(0, num_cols)
        
        value = fuzzy_df.iloc[row, col]
        
        if isinstance(value, str):
            if value in ['Post-menopausal', 'Pre-menopausal']:
                fuzzy_df.iloc[row, col] = 'Post-menopausal' if value == 'Pre-menopausal' else 'Pre-menopausal'
            elif value in ['Positive', 'Negative']:
                fuzzy_df.iloc[row, col] = 'Negative' if value == 'Positive' else 'Positive'
        elif isinstance(value, (int, float)):
            noise = np.random.normal(0, 0.1 * value)
            fuzzy_df.iloc[row, col] += noise
    
    return fuzzy_df

def main():
    st.title('Synthetic Data Generator: Clean and Fuzzy (Noisy)')
    st.write('This app generates synthetic breast cancer patient data and provides downloads for both clean and fuzzy datasets.')
    
    num_patients = st.number_input('Number of Patients to Generate', min_value=10, max_value=10000, value=100, step=10)
    
    if st.button('Generate Data'):
        perfect_data = generate_realistic_data(num_patients)
        fuzzy_data = generate_fuzzy_data(perfect_data, error_rate=0.1)

        st.subheader('Perfect Data')
        st.dataframe(perfect_data)
        st.download_button('Download Perfect Data', perfect_data.to_csv(index=False), file_name='perfect_data.csv')

        st.subheader('Fuzzy Data (10% Error Rate)')
        st.dataframe(fuzzy_data)
        st.download_button('Download Fuzzy Data', fuzzy_data.to_csv(index=False), file_name='fuzzy_data.csv')

if __name__ == '__main__':
    main()