File size: 12,374 Bytes
e6b4540
 
 
 
 
 
 
e0c7cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
 
 
 
 
cf2a9e1
 
 
e90b651
cf2a9e1
8dd1745
80a5f9c
e6b4540
80a5f9c
e6b4540
 
 
 
 
5e59417
e6b4540
 
 
 
 
d426a59
fbaef32
 
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d9022
e6b4540
 
 
 
 
80ab728
6064c2b
e6b4540
 
 
 
 
e0c7cec
 
 
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7cec
e6b4540
 
 
 
 
 
 
 
 
 
 
1409299
e6b4540
ea074c0
cf2a9e1
 
e0c7cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea074c0
 
cf2a9e1
e80434f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
ea074c0
cf2a9e1
 
3679efa
 
8dd1745
3679efa
8dd1745
 
46dbca8
85d6203
e6b4540
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain

# LangChain function for company analysis

def company_analysis(api_key: str, company_name: str) -> dict:
    
    os.environ['OPENAI_API_KEY'] = api_key  # Set the OpenAI API key as an environment variable
    llm = ChatOpenAI()
    '''
    # Identify the email's language
    template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
    prompt1 = ChatPromptTemplate.from_template(template1)
    chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")

    # Translate the email to English
    template2 = "Translate this email from {language} to English. Here is the email:\n" + email
    prompt2 = ChatPromptTemplate.from_template(template2)
    chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")

    # Provide a summary in English
    template3 = "Create a short summary of this email:\n{translated_email}"
    prompt3 = ChatPromptTemplate.from_template(template3)
    chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")

    # Provide a reply in English
    template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
    prompt4 = ChatPromptTemplate.from_template(template4)
    chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")

    # Provide a translation back to the original language
    template5 = "Translate the {reply} back to the original {language} of the email."
    prompt5 = ChatPromptTemplate.from_template(template5)
    chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
    

    seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
                                input_variables=['email'],
                                output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
                                verbose=True)
    '''                            
    return seq_chain(email)







print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")


TITLE1 = """<h1 align="center">Company Analysis</h1>"""
TITLE2 = """<h1 align="center">Investment Strategy</h1>"""
TITLE3 = """<h1 align="center">Profit Prophet</h1>"""

SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>"""
GETKEY = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <span>Get an API key
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""


AVATAR_IMAGES = (
    None,
    "https://media.roboflow.com/spaces/gemini-icon.png"
)

movie_script_analysis = ""


IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]


def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))


def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path


def preprocess_chat_history(
    history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
    messages = []
    for user_message, model_message in history:
        if isinstance(user_message, tuple):
            pass
        elif user_message is not None:
            messages.append({'role': 'user', 'parts': [user_message]})
        if model_message is not None:
            messages.append({'role': 'model', 'parts': [model_message]})
    return messages


def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image = preprocess_image(image)
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot


def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot


def bot(
    google_key: str,
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: CHAT_HISTORY
):
    if len(chatbot) == 0:
        return chatbot

    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    if files:
        text_prompt = [chatbot[-1][0]] \
            if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
            else []
        image_prompt = [Image.open(file).convert('RGB') for file in files]
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            text_prompt + image_prompt,
            stream=True,
            generation_config=generation_config)
    else:
        messages = preprocess_chat_history(chatbot)
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            messages,
            stream=True,
            generation_config=generation_config)

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot


google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
    visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
    label='Gemini Pro Vision',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2,
    height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
   show_label=False, autofocus=True, scale=8, lines=8
)
upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)

run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)

temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature controls the degree of randomness in token selection. Lower "
        "temperatures are good for prompts that expect a true or correct response, "
        "while higher temperatures can lead to more diverse or unexpected results. "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token limit determines the maximum amount of text output from one prompt. A "
        "token is approximately four characters. The default value is 2048."
    ))
stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "A stop sequence is a series of characters (including spaces) that stops "
        "response generation if the model encounters it. The sequence is not included "
        "as part of the response. You can add up to five stop sequences."
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k changes how the model selects tokens for output. A top-k of 1 means the "
        "selected token is the most probable among all tokens in the model’s "
        "vocabulary (also called greedy decoding), while a top-k of 3 means that the "
        "next token is selected from among the 3 most probable tokens (using "
        "temperature)."
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p changes how the model selects tokens for output. Tokens are selected "
        "from most probable to least until the sum of their probabilities equals the "
        "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
        "and .1 and the top-p value is .5, then the model will select either A or B as "
        "the next token (using temperature). "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]


bot_inputs = [
    google_key_component,
    upload_button_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]


with gr.Blocks() as demo:
    with gr.Tab("Company Analysis"):
        gr.HTML(TITLE1)

        run_button_analysis.click(
        fn=company_analysis,
        inputs=[
            gr.inputs.Textbox(label="Enter your OpenAI API Key:", type="password"),
            gr.inputs.Textbox(label="Enter the Company Name:")
        ],
        outputs=[
            gr.outputs.Textbox(label="Language"),
            gr.outputs.Textbox(label="Summary"),
            gr.outputs.Textbox(label="Translated Email"),
            gr.outputs.Textbox(label="Reply in English"),
            gr.outputs.Textbox(label="Reply in Original Language")
        ],
        title="Chain Example: Language, Summary, Translate, Respond & Translate",
        description="Translates an email to English, provides a summary, plausible reply and translates back to the sender"
        )

      
    with gr.Tab("Investment Strategy"):    
        gr.HTML(TITLE2)
        gr.HTML(SUBTITLE)
        gr.HTML(GETKEY)
        with gr.Column():
            google_key_component.render()
            chatbot_component.render()
            with gr.Row():
                text_prompt_component.render()
                upload_button_component.render()
                run_button_component.render()
            with gr.Accordion("Parameters", open=False):
                temperature_component.render()
                max_output_tokens_component.render()
                stop_sequences_component.render()
                with gr.Accordion("Advanced", open=False):
                    top_k_component.render()
                    top_p_component.render()
    
        run_button_component.click(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        text_prompt_component.submit(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        upload_button_component.upload(
            fn=upload,
            inputs=[upload_button_component, chatbot_component],
            outputs=[chatbot_component],
            queue=False
        )

    with gr.Tab("Profit Prophet"):
        gr.HTML(TITLE3)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
 

        
demo.queue(max_size=99).launch(debug=False, show_error=True)