File size: 6,448 Bytes
025a7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import uuid
from typing import Any, List, Optional

from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI

# from langchain_google_genai import ChatGoogleGenerativeAI



from langchain.agents.format_scratchpad import format_log_to_str
from langchain.memory import ConversationSummaryMemory


from langchain.tools.render import render_text_description
from langchain_core.runnables.config import RunnableConfig
from pydantic import (


    UUID4,
    BaseModel,
    ConfigDict,
    Field,
    InstanceOf,
    field_validator,
    model_validator,
)
from pydantic_core import PydanticCustomError

from crewai.agents import (
    CacheHandler,
    CrewAgentExecutor,
    CrewAgentOutputParser,
    ToolsHandler,
)
from crewai.prompts import Prompts


class Agent(BaseModel):
    """Represents an agent in a system.

    Each agent has a role, a goal, a backstory, and an optional language model (llm).
    The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents.

    Attributes:
            agent_executor: An instance of the CrewAgentExecutor class.
            role: The role of the agent.
            goal: The objective of the agent.
            backstory: The backstory of the agent.
            llm: The language model that will run the agent.
            memory: Whether the agent should have memory or not.
            verbose: Whether the agent execution should be in verbose mode.
            allow_delegation: Whether the agent is allowed to delegate tasks to other agents.
    """

    __hash__ = object.__hash__
    model_config = ConfigDict(arbitrary_types_allowed=True)
    id: UUID4 = Field(
        default_factory=uuid.uuid4,
        frozen=True,
        description="Unique identifier for the object, not set by user.",
    )
    role: str = Field(description="Role of the agent")
    goal: str = Field(description="Objective of the agent")
    backstory: str = Field(description="Backstory of the agent")
    llm: Optional[Any] = Field(
        default_factory=lambda: ChatOpenAI(
            temperature=0.7,
            model_name="gpt-4",
        ),
        description="Language model that will run the agent.",
    )
    memory: bool = Field(
        default=True, description="Whether the agent should have memory or not"
    )
    verbose: bool = Field(
        default=False, description="Verbose mode for the Agent Execution"
    )
    allow_delegation: bool = Field(
        default=True, description="Allow delegation of tasks to agents"
    )
    tools: List[Any] = Field(
        default_factory=list, description="Tools at agents disposal"
    )
    agent_executor: Optional[InstanceOf[CrewAgentExecutor]] = Field(
        default=None, description="An instance of the CrewAgentExecutor class."
    )
    tools_handler: Optional[InstanceOf[ToolsHandler]] = Field(
        default=None, description="An instance of the ToolsHandler class."
    )
    cache_handler: Optional[InstanceOf[CacheHandler]] = Field(
        default=CacheHandler(), description="An instance of the CacheHandler class."
    )

    @field_validator("id", mode="before")
    @classmethod
    def _deny_user_set_id(cls, v: Optional[UUID4]) -> None:
        if v:
            raise PydanticCustomError(
                "may_not_set_field", "This field is not to be set by the user.", {}
            )

    @model_validator(mode="after")
    def check_agent_executor(self) -> "Agent":
        if not self.agent_executor:
            self.set_cache_handler(self.cache_handler)
        return self

    def execute_task(
        self, task: str, context: str = None, tools: List[Any] = None
    ) -> str:
        """Execute a task with the agent.

        Args:
            task: Task to execute.
            context: Context to execute the task in.
            tools: Tools to use for the task.

        Returns:
            Output of the agent
        """
        if context:
            task = "\n".join(
                [task, "\nThis is the context you are working with:", context]
            )

        tools = tools or self.tools
        self.agent_executor.tools = tools

        return self.agent_executor.invoke(
            {
                "input": task,
                "tool_names": self.__tools_names(tools),
                "tools": render_text_description(tools),
            },
            RunnableConfig(callbacks=[self.tools_handler]),
        )["output"]

    def set_cache_handler(self, cache_handler) -> None:
        self.cache_handler = cache_handler
        self.tools_handler = ToolsHandler(cache=self.cache_handler)
        self.__create_agent_executor()

    def __create_agent_executor(self) -> CrewAgentExecutor:
        """Create an agent executor for the agent.

        Returns:
            An instance of the CrewAgentExecutor class.
        """
        agent_args = {
            "input": lambda x: x["input"],
            "tools": lambda x: x["tools"],
            "tool_names": lambda x: x["tool_names"],
            "agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
        }
        executor_args = {
            "tools": self.tools,
            "verbose": self.verbose,
            "handle_parsing_errors": True,
        }

        if self.memory:
            summary_memory = ConversationSummaryMemory(
                llm=self.llm, memory_key="chat_history", input_key="input"
            )
            executor_args["memory"] = summary_memory
            agent_args["chat_history"] = lambda x: x["chat_history"]
            prompt = Prompts.TASK_EXECUTION_WITH_MEMORY_PROMPT
        else:
            prompt = Prompts.TASK_EXECUTION_PROMPT

        execution_prompt = prompt.partial(
            goal=self.goal,
            role=self.role,
            backstory=self.backstory,
        )

        bind = self.llm.bind(stop=["\nObservation"])
        inner_agent = (
            agent_args
            | execution_prompt
            | bind
            | CrewAgentOutputParser(
                tools_handler=self.tools_handler, cache=self.cache_handler
            )
        )
        self.agent_executor = CrewAgentExecutor(agent=inner_agent, **executor_args)

    @staticmethod
    def __tools_names(tools) -> str:
        return ", ".join([t.name for t in tools])