Spaces:
Sleeping
Sleeping
File size: 21,926 Bytes
e6b4540 e0c7cec de00c34 f9746d7 de00c34 e0c7cec e6b4540 ea3b15d cf2a9e1 e90b651 cf2a9e1 8dd1745 80a5f9c e6b4540 80a5f9c e6b4540 5e59417 e6b4540 d426a59 fbaef32 e6b4540 99d9022 e6b4540 80ab728 6064c2b e6b4540 e0c7cec 745695e e6b4540 e0c7cec e6b4540 ea3b15d f9746d7 ea3b15d f9746d7 ea3b15d f9746d7 ea3b15d 745695e ea3b15d 6f17d54 745695e e6b4540 f727e0f ea074c0 cf2a9e1 e0c7cec e8bc2e1 e0c7cec e8bc2e1 d1b61fc e0c7cec ea074c0 cf2a9e1 e80434f e6b4540 ea074c0 cf2a9e1 3679efa 8dd1745 3679efa 8dd1745 46dbca8 85d6203 e6b4540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain
from textwrap import dedent
import google.generativeai as genai
import yfinance as yf
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import plotting
import copy
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import datetime
import datetime
# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
from crewai.tools.browser_tools import BrowserTools
from crewai.tools.sec_tools import SECTools
# Google Langchain
from langchain_google_genai import GoogleGenerativeAI
#Crew imports
from crewai import Agent, Task, Crew, Process
# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')
# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")
# LangChain function for company analysis
def company_analysis(api_key: str, company_name: str) -> dict:
os.environ['OPENAI_API_KEY'] = api_key # Set the OpenAI API key as an environment variable
llm = ChatOpenAI()
'''
# Identify the email's language
template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
prompt1 = ChatPromptTemplate.from_template(template1)
chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")
# Translate the email to English
template2 = "Translate this email from {language} to English. Here is the email:\n" + email
prompt2 = ChatPromptTemplate.from_template(template2)
chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")
# Provide a summary in English
template3 = "Create a short summary of this email:\n{translated_email}"
prompt3 = ChatPromptTemplate.from_template(template3)
chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")
# Provide a reply in English
template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
prompt4 = ChatPromptTemplate.from_template(template4)
chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")
# Provide a translation back to the original language
template5 = "Translate the {reply} back to the original {language} of the email."
prompt5 = ChatPromptTemplate.from_template(template5)
chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
input_variables=['email'],
output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
verbose=True)
'''
return seq_chain(email)
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE_INTRO = """<h1 align="center">Introduction to Financial Manager</h1>"""
TITLE1 = """<h1 align="center">Company Analysis</h1>"""
TITLE2 = """<h1 align="center">Investment Strategy</h1>"""
TITLE3 = """<h1 align="center">Profit Prophet</h1>"""
SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>"""
GETKEY = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<span>Get an API key
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
AVATAR_IMAGES = (
None,
"https://media.roboflow.com/spaces/gemini-icon.png"
)
movie_script_analysis = ""
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def preprocess_chat_history(
history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
messages = []
for user_message, model_message in history:
if isinstance(user_message, tuple):
pass
elif user_message is not None:
messages.append({'role': 'user', 'parts': [user_message]})
if model_message is not None:
messages.append({'role': 'model', 'parts': [model_message]})
return messages
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image = preprocess_image(image)
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
google_key: str,
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: CHAT_HISTORY
):
if len(chatbot) == 0:
return chatbot
google_key = google_key if google_key else GOOGLE_API_KEY
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if files:
text_prompt = [chatbot[-1][0]] \
if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
else []
image_prompt = [Image.open(file).convert('RGB') for file in files]
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(
text_prompt + image_prompt,
stream=True,
generation_config=generation_config)
else:
messages = preprocess_chat_history(chatbot)
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(
messages,
stream=True,
generation_config=generation_config)
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
label='Gemini Pro Vision',
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
show_label=False, autofocus=True, scale=8, lines=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)
run_button_crewai = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
upload_button_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
# Gmix ++++++++++++++++++++++++++++++++++++++++++++++++
#Crew imports
from crewai import Agent, Task, Crew, Process
# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)
def crewai_process(research_topic):
# Define your agents with roles and goals
researcher = Agent(
role='Senior Research Analyst',
goal=f'Uncover cutting-edge developments in {research_topic}',
backstory="""You are a Senior Research Analyst at a leading think tank.
Your expertise lies in identifying emerging trends. You have a knack for dissecting complex data and presenting
actionable insights.""",
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
)
writer = Agent(
role='Tech Content Strategist',
goal='Craft compelling content on tech advancements',
backstory="""You are a renowned Tech Social Media Content Writer and Strategist, known for your insightful
and engaging articles on technology and innovation. With a deep understanding of
the tech industry and how people are impacted by it, you transform complex concepts into compelling narratives.""",
verbose=True,
allow_delegation=True,
llm = gemini_llm
# Add tools and other optional parameters as needed
)
# Create tasks for your agents
task1 = Task(
description=f"""Conduct a comprehensive analysis of the latest advancements in {research_topic}.
Compile your findings in a detailed report. Your final answer MUST be a full analysis report""",
agent=researcher
)
task2 = Task(
description="""Using the insights from the researcher's report, develop an engaging blog
post that highlights the most significant advancements.
Your post should be informative yet accessible, catering to a tech-savvy audience.
Aim for a narrative that captures the essence of these breakthroughs and their
implications for the future. Your final answer MUST be the full blog post of at least 3 paragraphs.""",
agent=writer
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[researcher, writer],
tasks=[task1, task2],
verbose=2,
process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
return result
# Portfolio Analysis +++++++++++++++++++++++++++++++++++
def plot_cum_returns(data, title):
daily_cum_returns = 1 + data.dropna().pct_change()
daily_cum_returns = daily_cum_returns.cumprod()*100
fig = px.line(daily_cum_returns, title=title)
return fig
def plot_efficient_frontier_and_max_sharpe(mu, S):
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
ef = EfficientFrontier(mu, S)
fig, ax = plt.subplots(figsize=(6,4))
ef_max_sharpe = copy.deepcopy(ef)
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
# Find the max sharpe portfolio
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
# Generate random portfolios with random weights
n_samples = 1000
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
rets = w.dot(ef.expected_returns)
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
sharpes = rets / stds
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
# Output
ax.legend()
return fig
def output_results(start_date, end_date, tickers_string):
tickers = tickers_string.split(',')
# Get Stock Prices
stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
# Plot Individual Stock Prices
fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
# Plot Individual Cumulative Returns
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
# Calculatge and Plot Correlation Matrix between Stocks
corr_df = stocks_df.corr().round(2)
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
# Calculate expected returns and sample covariance matrix for portfolio optimization later
mu = expected_returns.mean_historical_return(stocks_df)
S = risk_models.sample_cov(stocks_df)
# Plot efficient frontier curve
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
# Get optimized weights
ef = EfficientFrontier(mu, S)
ef.max_sharpe(risk_free_rate=0.04)
weights = ef.clean_weights()
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
'{}%'.format((annual_volatility*100).round(2)), \
'{}%'.format((sharpe_ratio*100).round(2))
weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
weights_df = weights_df.reset_index()
weights_df.columns = ['Tickers', 'Weights']
# Calculate returns of portfolio with optimized weights
stocks_df['Optimized Portfolio'] = 0
for ticker, weight in weights.items():
stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight
# Plot Cumulative Returns of Optimized Portfolio
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
# Interface =============================================
with gr.Tab("Introduction"):
gr.HTML(TITLE_INTRO)
with gr.Tab("Your Portfolio"):
gr.HTML(TITLE_INTRO)
run_button_crewai.click(
fn=crewai_process,
inputs=gr.Textbox(lines=2, placeholder="Enter Research Topic Here..."),
outputs="text",
title="CrewAI on Gemini (Blog Post Writer)",
description="Input a research topic to get a comprehensive analysis (in logs) and a blog post draft (in output)."
)
with gr.Blocks() as demo:
with gr.Tab("Portfolio Analysis"):
with gr.Blocks() as app:
with gr.Row():
gr.HTML("<h1>Bohmian's Stock Portfolio Optimizer</h1>")
with gr.Row():
start_date = gr.Textbox("2013-01-01", label="Start Date")
end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
with gr.Row():
tickers_string = gr.Textbox("MA,META,V,AMZN,JPM,BA",
label='Enter all stock tickers to be included in portfolio separated \
by commas WITHOUT spaces, e.g. "MA,META,V,AMZN,JPM,BA"')
btn = gr.Button("Get Optimized Portfolio")
with gr.Row():
gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
with gr.Row():
expected_annual_return = gr.Text(label="Expected Annual Return")
annual_volatility = gr.Text(label="Annual Volatility")
sharpe_ratio = gr.Text(label="Sharpe Ratio")
with gr.Row():
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")
with gr.Row():
fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
fig_corr = gr.Plot(label="Correlation between Stocks")
with gr.Row():
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
with gr.Tab("Company Analysis"):
gr.HTML(TITLE1)
run_button_analysis.click(
fn=company_analysis,
inputs=[
gr.Textbox(label="Enter your OpenAI API Key:", type="password"),
gr.Textbox(label="Enter the Company Name:")
],
outputs=[
gr.Textbox(label="Language"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Translated Email"),
gr.Textbox(label="Reply in English"),
gr.Textbox(label="Reply in Original Language")
]
)
with gr.Tab("Investment Strategy"):
gr.HTML(TITLE2)
gr.HTML(SUBTITLE)
gr.HTML(GETKEY)
with gr.Column():
google_key_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
with gr.Tab("Profit Prophet"):
gr.HTML(TITLE3)
with gr.Row():
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
demo.queue(max_size=99).launch(debug=False, show_error=True) |