File size: 21,926 Bytes
e6b4540
 
 
 
 
 
 
e0c7cec
 
 
 
de00c34
 
 
f9746d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de00c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
 
 
 
 
ea3b15d
cf2a9e1
 
 
e90b651
cf2a9e1
8dd1745
80a5f9c
e6b4540
80a5f9c
e6b4540
 
 
 
 
5e59417
e6b4540
 
 
 
 
d426a59
fbaef32
 
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d9022
e6b4540
 
 
 
 
80ab728
6064c2b
e6b4540
 
 
 
 
e0c7cec
 
 
745695e
 
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7cec
e6b4540
 
 
 
 
 
 
 
 
 
 
ea3b15d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9746d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3b15d
f9746d7
ea3b15d
 
f9746d7
ea3b15d
 
745695e
ea3b15d
 
 
 
6f17d54
745695e
e6b4540
f727e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea074c0
cf2a9e1
 
e0c7cec
 
 
e8bc2e1
 
e0c7cec
 
e8bc2e1
 
 
 
 
d1b61fc
e0c7cec
 
ea074c0
 
cf2a9e1
e80434f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
ea074c0
cf2a9e1
 
3679efa
 
8dd1745
3679efa
8dd1745
 
46dbca8
85d6203
e6b4540
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain

from textwrap import dedent
import google.generativeai as genai


import yfinance as yf
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import plotting
import copy
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import datetime
import datetime


# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
from crewai.tools.browser_tools import BrowserTools
from crewai.tools.sec_tools import SECTools

# Google Langchain
from langchain_google_genai import GoogleGenerativeAI

#Crew imports
from crewai import Agent, Task, Crew, Process

# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')

# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
    raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")





# LangChain function for company analysis

def company_analysis(api_key: str, company_name: str) -> dict:
    
    os.environ['OPENAI_API_KEY'] = api_key  # Set the OpenAI API key as an environment variable
    llm = ChatOpenAI()
    '''
    # Identify the email's language
    template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
    prompt1 = ChatPromptTemplate.from_template(template1)
    chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")

    # Translate the email to English
    template2 = "Translate this email from {language} to English. Here is the email:\n" + email
    prompt2 = ChatPromptTemplate.from_template(template2)
    chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")

    # Provide a summary in English
    template3 = "Create a short summary of this email:\n{translated_email}"
    prompt3 = ChatPromptTemplate.from_template(template3)
    chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")

    # Provide a reply in English
    template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
    prompt4 = ChatPromptTemplate.from_template(template4)
    chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")

    # Provide a translation back to the original language
    template5 = "Translate the {reply} back to the original {language} of the email."
    prompt5 = ChatPromptTemplate.from_template(template5)
    chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
    

    seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
                                input_variables=['email'],
                                output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
                                verbose=True)
    '''                            
    return seq_chain(email)







print("google-generativeai:", genai.__version__)

GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")

TITLE_INTRO = """<h1 align="center">Introduction to Financial Manager</h1>"""

TITLE1 = """<h1 align="center">Company Analysis</h1>"""
TITLE2 = """<h1 align="center">Investment Strategy</h1>"""
TITLE3 = """<h1 align="center">Profit Prophet</h1>"""

SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>"""
GETKEY = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <span>Get an API key
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""


AVATAR_IMAGES = (
    None,
    "https://media.roboflow.com/spaces/gemini-icon.png"
)

movie_script_analysis = ""


IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]


def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))


def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path


def preprocess_chat_history(
    history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
    messages = []
    for user_message, model_message in history:
        if isinstance(user_message, tuple):
            pass
        elif user_message is not None:
            messages.append({'role': 'user', 'parts': [user_message]})
        if model_message is not None:
            messages.append({'role': 'model', 'parts': [model_message]})
    return messages


def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image = preprocess_image(image)
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot


def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot


def bot(
    google_key: str,
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: CHAT_HISTORY
):
    if len(chatbot) == 0:
        return chatbot

    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    if files:
        text_prompt = [chatbot[-1][0]] \
            if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
            else []
        image_prompt = [Image.open(file).convert('RGB') for file in files]
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            text_prompt + image_prompt,
            stream=True,
            generation_config=generation_config)
    else:
        messages = preprocess_chat_history(chatbot)
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            messages,
            stream=True,
            generation_config=generation_config)

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot


google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
    visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
    label='Gemini Pro Vision',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2,
    height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
   show_label=False, autofocus=True, scale=8, lines=8
)
upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)

run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)

run_button_crewai = gr.Button(value="Run", variant="primary", scale=1)

temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature controls the degree of randomness in token selection. Lower "
        "temperatures are good for prompts that expect a true or correct response, "
        "while higher temperatures can lead to more diverse or unexpected results. "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token limit determines the maximum amount of text output from one prompt. A "
        "token is approximately four characters. The default value is 2048."
    ))
stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "A stop sequence is a series of characters (including spaces) that stops "
        "response generation if the model encounters it. The sequence is not included "
        "as part of the response. You can add up to five stop sequences."
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k changes how the model selects tokens for output. A top-k of 1 means the "
        "selected token is the most probable among all tokens in the model’s "
        "vocabulary (also called greedy decoding), while a top-k of 3 means that the "
        "next token is selected from among the 3 most probable tokens (using "
        "temperature)."
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p changes how the model selects tokens for output. Tokens are selected "
        "from most probable to least until the sum of their probabilities equals the "
        "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
        "and .1 and the top-p value is .5, then the model will select either A or B as "
        "the next token (using temperature). "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]


bot_inputs = [
    google_key_component,
    upload_button_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]





# Gmix ++++++++++++++++++++++++++++++++++++++++++++++++

#Crew imports
from crewai import Agent, Task, Crew, Process

# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)

def crewai_process(research_topic):
    # Define your agents with roles and goals
    researcher = Agent(
        role='Senior Research Analyst',
        goal=f'Uncover cutting-edge developments in {research_topic}',
        backstory="""You are a Senior Research Analyst at a leading think tank.
        Your expertise lies in identifying emerging trends. You have a knack for dissecting complex data and presenting
        actionable insights.""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                GeminiSearchTools.gemini_search
      ]

    )
    writer = Agent(
        role='Tech Content Strategist',
        goal='Craft compelling content on tech advancements',
        backstory="""You are a renowned Tech Social Media Content Writer and Strategist, known for your insightful
        and engaging articles on technology and innovation. With a deep understanding of
        the tech industry and how people are impacted by it, you transform complex concepts into compelling narratives.""",
        verbose=True,
        allow_delegation=True,
        llm = gemini_llm
     
        # Add tools and other optional parameters as needed
    )

    # Create tasks for your agents
    task1 = Task(
        description=f"""Conduct a comprehensive analysis of the latest advancements in {research_topic}.
        Compile your findings in a detailed report. Your final answer MUST be a full analysis report""",
        agent=researcher
    )

    task2 = Task(
        description="""Using the insights from the researcher's report, develop an engaging blog
        post that highlights the most significant advancements.
        Your post should be informative yet accessible, catering to a tech-savvy audience.
        Aim for a narrative that captures the essence of these breakthroughs and their
        implications for the future. Your final answer MUST be the full blog post of at least 3 paragraphs.""",
        agent=writer
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[researcher, writer],
        tasks=[task1, task2],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result






# Portfolio Analysis +++++++++++++++++++++++++++++++++++

def plot_cum_returns(data, title):    
    daily_cum_returns = 1 + data.dropna().pct_change()
    daily_cum_returns = daily_cum_returns.cumprod()*100
    fig = px.line(daily_cum_returns, title=title)
    return fig

def plot_efficient_frontier_and_max_sharpe(mu, S): 
    # Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
    ef = EfficientFrontier(mu, S)
    fig, ax = plt.subplots(figsize=(6,4))
    ef_max_sharpe = copy.deepcopy(ef)
    plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
    # Find the max sharpe portfolio
    ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
    ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
    ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
    # Generate random portfolios with random weights
    n_samples = 1000
    w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
    rets = w.dot(ef.expected_returns)
    stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
    sharpes = rets / stds
    ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
    # Output
    ax.legend()
    return fig

def output_results(start_date, end_date, tickers_string):
    tickers = tickers_string.split(',')
    
    # Get Stock Prices
    stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
    
    # Plot Individual Stock Prices
    fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
        
    # Plot Individual Cumulative Returns
    fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
    
    # Calculatge and Plot Correlation Matrix between Stocks
    corr_df = stocks_df.corr().round(2)
    fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')

    # Calculate expected returns and sample covariance matrix for portfolio optimization later
    mu = expected_returns.mean_historical_return(stocks_df)
    S = risk_models.sample_cov(stocks_df)

    # Plot efficient frontier curve
    fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)

    # Get optimized weights
    ef = EfficientFrontier(mu, S)
    ef.max_sharpe(risk_free_rate=0.04)
    weights = ef.clean_weights()
    expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
    
    expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
    '{}%'.format((annual_volatility*100).round(2)), \
    '{}%'.format((sharpe_ratio*100).round(2))
    
    weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
    weights_df = weights_df.reset_index()
    weights_df.columns = ['Tickers', 'Weights']

    # Calculate returns of portfolio with optimized weights
    stocks_df['Optimized Portfolio'] = 0
    for ticker, weight in weights.items():
        stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight

    # Plot Cumulative Returns of Optimized Portfolio
    fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')

    return  fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
            expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns


# Interface =============================================

with gr.Tab("Introduction"):
    gr.HTML(TITLE_INTRO)

with gr.Tab("Your Portfolio"):
    gr.HTML(TITLE_INTRO)
    run_button_crewai.click(
    fn=crewai_process, 
    inputs=gr.Textbox(lines=2, placeholder="Enter Research Topic Here..."), 
    outputs="text",
    title="CrewAI on Gemini (Blog Post Writer)",
    description="Input a research topic to get a comprehensive analysis (in logs) and a blog post draft (in output)."
    )
with gr.Blocks() as demo:
    with gr.Tab("Portfolio Analysis"):
        with gr.Blocks() as app:
            with gr.Row():
                gr.HTML("<h1>Bohmian's Stock Portfolio Optimizer</h1>")
            
            with gr.Row():
                start_date = gr.Textbox("2013-01-01", label="Start Date")
                end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
            
            with gr.Row():        
                tickers_string = gr.Textbox("MA,META,V,AMZN,JPM,BA", 
                                            label='Enter all stock tickers to be included in portfolio separated \
                                            by commas WITHOUT spaces, e.g. "MA,META,V,AMZN,JPM,BA"')
                btn = gr.Button("Get Optimized Portfolio")
               
            with gr.Row():
                gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
                
            with gr.Row():
                expected_annual_return = gr.Text(label="Expected Annual Return")
                annual_volatility = gr.Text(label="Annual Volatility")
                sharpe_ratio = gr.Text(label="Sharpe Ratio")            
           
            with gr.Row():        
                fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
                weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")
                
            with gr.Row():
                fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
                fig_corr = gr.Plot(label="Correlation between Stocks")
            
            with gr.Row():
                fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
                fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
        
            btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string], 
                      outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])



    
    with gr.Tab("Company Analysis"):
        gr.HTML(TITLE1)

        run_button_analysis.click(
        fn=company_analysis,
        inputs=[
            gr.Textbox(label="Enter your OpenAI API Key:", type="password"),
            gr.Textbox(label="Enter the Company Name:")
        ],
        outputs=[
            gr.Textbox(label="Language"),
            gr.Textbox(label="Summary"),
            gr.Textbox(label="Translated Email"),
            gr.Textbox(label="Reply in English"),
            gr.Textbox(label="Reply in Original Language")
        ]
        )

      
    with gr.Tab("Investment Strategy"):    
        gr.HTML(TITLE2)
        gr.HTML(SUBTITLE)
        gr.HTML(GETKEY)
        with gr.Column():
            google_key_component.render()
            chatbot_component.render()
            with gr.Row():
                text_prompt_component.render()
                upload_button_component.render()
                run_button_component.render()
            with gr.Accordion("Parameters", open=False):
                temperature_component.render()
                max_output_tokens_component.render()
                stop_sequences_component.render()
                with gr.Accordion("Advanced", open=False):
                    top_k_component.render()
                    top_p_component.render()
    
        run_button_component.click(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        text_prompt_component.submit(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        upload_button_component.upload(
            fn=upload,
            inputs=[upload_button_component, chatbot_component],
            outputs=[chatbot_component],
            queue=False
        )

    with gr.Tab("Profit Prophet"):
        gr.HTML(TITLE3)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
 

        
demo.queue(max_size=99).launch(debug=False, show_error=True)