Spaces:
Sleeping
Sleeping
File size: 37,958 Bytes
e6b4540 e0c7cec de00c34 f9746d7 de00c34 266c0a0 489aeed de00c34 035899a e0c7cec 02144c3 e0c7cec e6b4540 489aeed e6b4540 489aeed cf2a9e1 e90b651 cf2a9e1 8dd1745 80a5f9c e6b4540 80a5f9c e6b4540 5e59417 e6b4540 d426a59 fbaef32 e6b4540 99d9022 e6b4540 80ab728 6064c2b e6b4540 5e42be9 e6b4540 e0c7cec 3f6749c 745695e e6b4540 e0c7cec e6b4540 ea3b15d 1d47132 ea3b15d 11d1cbf ea3b15d 93dce7d a6249ee 93dce7d ea3b15d 93dce7d a6249ee 93dce7d 69e13bb 93dce7d 8e2e2e9 93dce7d a6249ee 93dce7d ea3b15d a6249ee 93dce7d a6249ee 93dce7d ea3b15d 93dce7d 21427ae 93dce7d ea3b15d 93dce7d ea3b15d f9746d7 c149a37 ec19f02 eb13913 f9746d7 ea3b15d f9746d7 2ed1caf e6b4540 2ed1caf a5038fa 489aeed 035899a b6302c6 035899a c149a37 d30067e 29da034 d30067e 489aeed f727e0f eb13913 f727e0f eb13913 9b457a9 266c0a0 c149a37 266c0a0 eb13913 266c0a0 3cc5085 eb13913 266c0a0 eb13913 266c0a0 9b457a9 3ae4b17 266c0a0 eb13913 f727e0f 9b457a9 f727e0f 40f2353 f5dde1c 9b457a9 eb13913 f727e0f 9b457a9 c149a37 f850c97 eb13913 f850c97 eb13913 f850c97 9b457a9 eb13913 f850c97 9b457a9 eb13913 29da034 d30067e f727e0f f60225b 02144c3 f727e0f 02144c3 ea074c0 cf2a9e1 e0c7cec e8bc2e1 e0c7cec e8bc2e1 d1b61fc e0c7cec ea074c0 cf2a9e1 e80434f e6b4540 ea074c0 cf2a9e1 3679efa 8dd1745 3679efa 8dd1745 02144c3 46dbca8 85d6203 e6b4540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain
from textwrap import dedent
import google.generativeai as genai
import yfinance as yf
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import plotting
import copy
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import datetime
import datetime
# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
from crewai.tools.browser_tools import BrowserTools
from crewai.tools.sec_tools import SECTools
# Google Langchain
from langchain_google_genai import GoogleGenerativeAI
#Crew imports
from crewai import Agent, Task, Crew, Process
# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')
# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")
STEP1_TITLE = """<h1 align="center"><a href="https://chat.openai.com/g/g-3ZNjAmguz-portfolio-investment-advisor">Custom GPT Portfolio Generator</a></h1>"""
STEP2_TITLE = """<h1 align="center">Create a Financial OutLook Report of Your Portfolio</h1>"""
STEP3_TITLE = """<h1 align="center">Optimize Your Portfolio to Maximize Return</h1>"""
portfolios_output = """
Creating a Conservative Portfolio
Title: Steady and Secure: A Conservative Portfolio Approach
Introduction:
In the world of investments, a conservative portfolio is akin to a steady ship in turbulent seas. It's designed for those who seek stability over high risks, focusing on preserving capital and generating regular income. This approach is particularly appealing to retirees or those nearing retirement, who prioritize safeguarding their wealth over aggressive growth.
Rational for Selection of Each Stock:
Coca-Cola (KO): A classic example of stability and consistent dividend payout, Coca-Cola's global brand strength makes it a reliable choice for conservative investors.
Procter & Gamble (PG): Known for its wide range of consumer products, PG offers consistent performance and a strong history of dividend payments.
Johnson & Johnson (JNJ): A leader in healthcare, JNJ's diversified portfolio and strong financials offer low volatility and dependable dividends.
Verizon Communications (VZ): As a telecom giant, Verizon provides essential services, ensuring steady demand and reliable dividends.
Pfizer (PFE): A pharmaceutical stalwart, Pfizer offers a blend of stability and moderate growth, backed by a solid dividend history.
McDonald's (MCD): A global fast-food leader, McDonald’s demonstrates resilient performance and steady dividends, even in economic downturns.
Walmart (WMT): The retail giant's consistent performance and dividend history make it a stable choice for conservative portfolios.
3M (MMM): Known for its innovation and diversified product line, 3M offers stability and a long history of dividend growth.
The Southern Company (SO): As a utility company, SO provides essential services, leading to consistent demand and steady dividends.
Duke Energy (DUK): Another utility company, Duke Energy's focus on essential services ensures stable revenues and dividends.
Conclusion:
This conservative portfolio is built on the bedrock of stability, resilience, and regular income. It's tailored for investors who prioritize capital preservation and steady income over high-risk, high-reward strategies.
Portfolio Tickers: KO, PG, JNJ, VZ, PFE, MCD, WMT, MMM, SO, DUK
Creating a Growth Portfolio
Title: Nurturing Wealth: A Growth-Oriented Portfolio Strategy
Introduction:
For the investor with an eye on the future and a stomach for some risk, a growth portfolio is the way to go. This strategy is ideal for those aiming for long-term capital appreciation. It typically includes stocks of companies with significant growth potential, such as those in technology, healthcare, and renewable energy sectors.
Rational for Selection of Each Stock:
Apple Inc. (AAPL): A leader in technology, Apple's continuous innovation and strong market presence make it a prime candidate for growth.
Amazon.com Inc. (AMZN): With its ever-expanding business and dominance in e-commerce and cloud computing, Amazon is poised for sustained growth.
Tesla Inc. (TSLA): At the forefront of the electric vehicle revolution, Tesla's growth potential in a transforming auto industry is substantial.
NVIDIA Corporation (NVDA): A key player in the gaming and AI sectors, NVIDIA's cutting-edge technology positions it for strong growth.
Alphabet Inc. (GOOGL): Google's parent company, with its diverse range of rapidly growing businesses, is a staple in any growth portfolio.
Microsoft Corporation (MSFT): A tech giant with consistent growth in cloud computing and software, Microsoft is a robust choice for growth.
Netflix, Inc. (NFLX): As a leader in streaming media, Netflix's ongoing global expansion and content creation suggest significant growth potential.
Visa Inc. (V): With the increasing shift to digital payments, Visa's global network positions it well for growth in fintech.
Mastercard Incorporated (MA): Similar to Visa, Mastercard's role in the growing digital payment sector offers strong growth prospects.
Salesforce.com, Inc. (CRM): As a leader in cloud-based customer relationship management software, Salesforce is well-positioned for growth in the digital transformation of businesses.
Conclusion:
This growth portfolio is designed for the long-term investor who seeks capital appreciation and is comfortable with higher risk. It leverages the potential of market leaders and innovators across various sectors, setting the stage for significant growth over time.
Portfolio Tickers: AAPL, AMZN, TSLA, NVDA, GOOGL, MSFT, NFLX, V, MA, CRM
Creating a Balanced Portfolio
Title: Harmonizing Growth and Stability: The Balanced Portfolio
Introduction:
A balanced portfolio is the middle ground in investment strategy, blending the growth potential of stocks with the stability of bonds and other income-generating assets. This approach aims to moderate risk while still offering opportunities for capital appreciation and income. It's well-suited for investors who desire a mix of growth and income with a moderate risk profile.
Rational for Selection of Each Stock:
Apple Inc. (AAPL): As a tech giant with a solid track record, Apple offers both growth potential and relative stability, a perfect fit for a balanced portfolio.
JPMorgan Chase & Co. (JPM): A leading financial institution, JPMorgan brings stability and potential for capital appreciation, along with steady dividends.
Johnson & Johnson (JNJ): A diversified healthcare company, JNJ offers stability and consistent dividends, making it a reliable choice for balanced investing.
Procter & Gamble (PG): With a wide array of consumer products, PG is known for its stability and consistent dividend payouts.
The Coca-Cola Company (KO): A global beverage leader, Coca-Cola provides steady income through dividends, along with potential for moderate growth.
Microsoft Corporation (MSFT): A blend of growth and stability, Microsoft's strong financials and innovative edge make it a balanced choice.
Pfizer Inc. (PFE): In the healthcare sector, Pfizer offers a combination of stability, dividend income, and potential growth.
Verizon Communications Inc. (VZ): As a telecom giant, Verizon provides stable dividends and operates in a relatively stable industry.
3M Company (MMM): Known for its diversified industrial products, 3M offers a balance of stability and growth potential.
Walmart Inc. (WMT): The retail giant's consistent performance and defensive nature in economic downturns make it a balanced choice.
Conclusion:
This balanced portfolio is carefully crafted to provide a blend of stability and growth. It's an ideal choice for investors seeking a diversified approach, with a mix of reliable income and potential for capital appreciation.
Portfolio Tickers: AAPL, JPM, JNJ, PG, KO, MSFT, PFE, VZ, MMM, WMT
Creating an Aggressive Portfolio
Title: Pursuit of High Returns: An Aggressive Portfolio Strategy
Introduction:
The aggressive portfolio is designed for the investor who is willing to embrace high risk in pursuit of high returns. This strategy often involves investing in high-growth stocks, emerging market securities, and innovative sectors. It's most suitable for investors with a long-term horizon and a high tolerance for market volatility.
Rational for Selection of Each Stock:
Tesla, Inc. (TSLA): A leader in the electric vehicle industry, Tesla represents high growth potential in the evolving automotive sector.
Amazon.com, Inc. (AMZN): Amazon's continuous expansion into new markets and technologies positions it for aggressive growth.
NVIDIA Corporation (NVDA): With its leading role in AI and gaming, NVIDIA is poised for significant growth in high-tech sectors.
Alphabet Inc. (GOOGL): The parent company of Google, Alphabet has diverse and rapidly growing business segments, making it a strong candidate for aggressive growth.
Shopify Inc. (SHOP): As an e-commerce platform, Shopify has high growth potential in the expanding online retail space.
Square, Inc. (SQ): Operating in the fintech space, Square's innovative payment solutions position it for aggressive growth.
Moderna, Inc. (MRNA): A biotech company with a focus on mRNA technology, Moderna has high growth potential in the healthcare sector.
Zoom Video Communications, Inc. (ZM): A leader in remote communication solutions, Zoom has the potential for aggressive growth in the evolving workplace.
Snowflake Inc. (SNOW): A cloud computing company, Snowflake's innovative data platform positions it for high growth in the tech sector.
Peloton Interactive, Inc. (PTON): In the fitness technology space, Peloton's innovative business model offers high growth potential.
Conclusion:
This aggressive portfolio is tailored for those seeking exponential growth and who are comfortable with high levels of risk. It leverages the potential of companies in rapidly growing industries and innovative sectors, making it suitable for long-term, risk-tolerant investors.
Portfolio Tickers: TSLA, AMZN, NVDA, GOOGL, SHOP, SQ, MRNA, ZM, SNOW, PTON
Summary of Portfolio Strategies
Overview:
In this comprehensive investment guide, we explored four distinct portfolio strategies, each tailored to different investor profiles and risk tolerances. From the steady and secure conservative approach to the high-risk, high-reward aggressive strategy, these portfolios offer a range of options for investors with varying objectives and time horizons.
Summary of Each Portfolio:
Conservative Portfolio: Focused on stability and income generation, this portfolio includes stocks like KO, PG, and JNJ. Ideal for risk-averse investors, especially those nearing retirement, it emphasizes capital preservation and steady dividend income.
Growth Portfolio: Targeting long-term capital appreciation, this portfolio features companies like AAPL, AMZN, and TSLA. Suited for investors with a longer horizon and higher risk tolerance, it focuses on stocks with significant growth potential.
Balanced Portfolio: Aiming for a middle-ground approach, this portfolio includes a mix of stable and growth-oriented stocks like AAPL, JPM, and MSFT. It's designed for investors seeking both income and moderate capital appreciation, with a diversified risk profile.
Aggressive Portfolio: Geared towards maximum growth, this strategy includes high-growth stocks like TSLA, NVDA, and GOOGL. Suitable for investors with a high risk tolerance and a long-term investment horizon, it focuses on sectors with high potential for rapid growth.
Conclusion:
These tailored portfolios offer a range of investment strategies to suit different investor needs. Whether prioritizing income and stability or seeking aggressive growth, each portfolio is constructed with a specific investment goal and risk tolerance in mind.
"""
# LangChain function for company analysis
# For furture upgrade
def company_analysis(api_key: str, company_name: str) -> dict:
os.environ['OPENAI_API_KEY'] = api_key # Set the OpenAI API key as an environment variable
llm = ChatOpenAI()
'''
# Identify the email's language
template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
prompt1 = ChatPromptTemplate.from_template(template1)
chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")
# Translate the email to English
template2 = "Translate this email from {language} to English. Here is the email:\n" + email
prompt2 = ChatPromptTemplate.from_template(template2)
chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")
# Provide a summary in English
template3 = "Create a short summary of this email:\n{translated_email}"
prompt3 = ChatPromptTemplate.from_template(template3)
chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")
# Provide a reply in English
template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
prompt4 = ChatPromptTemplate.from_template(template4)
chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")
# Provide a translation back to the original language
template5 = "Translate the {reply} back to the original {language} of the email."
prompt5 = ChatPromptTemplate.from_template(template5)
chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
input_variables=['email'],
output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
verbose=True)
'''
return seq_chain(email)
print("google-generativeai:", genai.__version__)
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE1 = """<h1 align="center">Company Analysis</h1>"""
TITLE2 = """<h1 align="center">Investment Strategy</h1>"""
TITLE3 = """<h1 align="center">Profit Prophet</h1>"""
SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>"""
GETKEY = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
<span>Get an API key
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
</span>
</div>
"""
AVATAR_IMAGES = (
None,
"https://media.roboflow.com/spaces/gemini-icon.png"
)
movie_script_analysis = ""
IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def cache_pil_image(image: Image.Image) -> str:
image_filename = f"{uuid.uuid4()}.jpeg"
os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
image.save(image_path, "JPEG")
return image_path
def preprocess_chat_history(
history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
messages = []
for user_message, model_message in history:
if isinstance(user_message, tuple):
pass
elif user_message is not None:
messages.append({'role': 'user', 'parts': [user_message]})
if model_message is not None:
messages.append({'role': 'model', 'parts': [model_message]})
return messages
def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
for file in files:
image = Image.open(file).convert('RGB')
image = preprocess_image(image)
image_path = cache_pil_image(image)
chatbot.append(((image_path,), None))
return chatbot
def user(text_prompt: str, chatbot: CHAT_HISTORY):
if text_prompt:
chatbot.append((text_prompt, None))
return "", chatbot
def bot(
google_key: str,
files: Optional[List[str]],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: CHAT_HISTORY
):
if len(chatbot) == 0:
return chatbot
google_key = google_key if google_key else GOOGLE_API_KEY
if not google_key:
raise ValueError(
"GOOGLE_API_KEY is not set. "
"Please follow the instructions in the README to set it up.")
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if files:
text_prompt = [chatbot[-1][0]] \
if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
else []
image_prompt = [Image.open(file).convert('RGB') for file in files]
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(
text_prompt + image_prompt,
stream=True,
generation_config=generation_config)
else:
messages = preprocess_chat_history(chatbot)
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(
messages,
stream=True,
generation_config=generation_config)
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
value="",
type="password",
placeholder="...",
info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
label='Gemini Pro Vision',
bubble_full_width=False,
avatar_images=AVATAR_IMAGES,
scale=2,
height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
show_label=False, autofocus=True, scale=8, lines=8
)
upload_button_component = gr.UploadButton(
label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)
run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
upload_button_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
# Gmix ++++++++++++++++++++++++++++++++++++++++++++++++
#Crew imports
from crewai import Agent, Task, Crew, Process
# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)
def crewai_process(portfolio_stocks):
# Define your agents with roles and goals
equityanalyst = Agent(
role='Equity Analyst',
goal=f'''Analyzes and evaluates individual stocks in the porfolio {portfolio_stocks} by examining company financials,
market trends, and industry dynamics.''',
backstory="""Alex has a strong background in finance and economics, having graduated from a top university.
They worked for several years in a leading investment bank, where they honed their skills in analyzing financial
statements and market trends. Alex is passionate about the stock market and has a knack for identifying undervalued stocks.""",
verbose=True,
allow_delegation=False,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
)
portfoliomanager = Agent(
role='Portfolio Manager',
goal=f'''Determines the appropriate mix of assets {portfolio_stocks} in the portfolio based on investment objectives and
risk tolerance.''',
backstory="""Samira holds an MBA with a specialization in investment management and has over a decade of experience in
asset management. She has a proven track record of managing diverse investment portfolios and achieving consistent returns.
Samira excels in strategic thinking and is adept at adjusting investment strategies based on changing market conditions.""",
verbose=True,
allow_delegation=True,
llm = gemini_llm,
tools=[
GeminiSearchTools.gemini_search
]
# Add tools and other optional parameters as needed
)
riskanalyst = Agent(
role='Risk Analyst',
goal='''Identifies and evaluates the various risks associated with the portfolio''',
backstory="""David has a master’s degree in financial engineering and started his career in
risk management at a major insurance company. His expertise lies in quantitative analysis and
risk modeling. David is particularly skilled in using advanced statistical techniques to assess and mitigate risks.""",
verbose=True,
allow_delegation=True,
llm = gemini_llm
# Add tools and other optional parameters as needed
)
# Create tasks for your agents
task1 = Task(
description=f'''Alex will perform an in-depth analysis of a specific market sector that is currently
underrepresented in the portfolio {portfolio_stocks}. This involves evaluating the growth potential,
competitive landscape, and financial health of leading companies within that sector. The goal is to
identify potential investment opportunities that could offer higher returns and enhance the portfolios diversity''',
agent=equityanalyst
)
task2 = Task(
description="""Using the insights from the Equity Analyst's report, review the current asset allocation of the portfolio
and compare it against the targeted allocation that aligns with the investor's risk tolerance and investment objectives.
Given recent market shifts, she decides to tactically adjust the allocation, perhaps by increasing the weight in equities
or specific sectors that are forecasted to outperform. """,
agent=portfoliomanager
)
task3 = Task(
description="""Review and synthesize the analyses provided by the
Equity Analyst and the Portfolio Manager. Combine these insights to form a comprehensive
investment recommendation.
You MUST Consider all aspects, including financial health, market sentiment, and qualitative data from EDGAR filings.
Make sure to include a section that shows insider trading activity, and upcoming events like earnings.
Your final answer MUST be a recommendation for your customer. It should be a full super detailed report, providing a
clear investment stance and strategy with supporting evidence. Provide insight that my enhance the portfolio""",
agent=portfoliomanager
)
# Instantiate your crew with a sequential process
crew = Crew(
agents=[equityanalyst, portfoliomanager, riskanalyst],
tasks=[task1, task2, task3],
verbose=2,
process=Process.sequential
)
# Get your crew to work!
result = crew.kickoff()
return result
# Portfolio Analysis +++++++++++++++++++++++++++++++++++
def plot_cum_returns(data, title):
daily_cum_returns = 1 + data.dropna().pct_change()
daily_cum_returns = daily_cum_returns.cumprod()*100
fig = px.line(daily_cum_returns, title=title)
return fig
def plot_efficient_frontier_and_max_sharpe(mu, S):
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
ef = EfficientFrontier(mu, S)
fig, ax = plt.subplots(figsize=(6,4))
ef_max_sharpe = copy.deepcopy(ef)
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
# Find the max sharpe portfolio
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
# Generate random portfolios with random weights
n_samples = 1000
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
rets = w.dot(ef.expected_returns)
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
sharpes = rets / stds
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
# Output
ax.legend()
return fig
def output_results(start_date, end_date, tickers_string):
tickers = tickers_string.split(',')
# Get Stock Prices
stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
# Plot Individual Stock Prices
fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
# Plot Individual Cumulative Returns
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
# Calculatge and Plot Correlation Matrix between Stocks
corr_df = stocks_df.corr().round(2)
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
# Calculate expected returns and sample covariance matrix for portfolio optimization later
mu = expected_returns.mean_historical_return(stocks_df)
S = risk_models.sample_cov(stocks_df)
# Plot efficient frontier curve
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
# Get optimized weights
ef = EfficientFrontier(mu, S)
ef.max_sharpe(risk_free_rate=0.04)
weights = ef.clean_weights()
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
'{}%'.format((annual_volatility*100).round(2)), \
'{}%'.format((sharpe_ratio*100).round(2))
weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
weights_df = weights_df.reset_index()
weights_df.columns = ['Tickers', 'Weights']
# Calculate returns of portfolio with optimized weights
stocks_df['Optimized Portfolio'] = 0
for ticker, weight in weights.items():
stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight
# Plot Cumulative Returns of Optimized Portfolio
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
ticker_string_conservative = gr.Textbox("KO,PG,JNJ,VZ,PFE,MCD,WMT,MMM,SO,DUK")
ticker_string_growth = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM")
ticker_string_balanced = gr.Textbox("AAPL,JPM,JNJ,PG,KO,MSFT,PFE,VZ,MMM,WMT")
ticker_string_agressive = gr.Textbox("TSLA,AMZN,NVDA,GOOGL,SHOP,SQ,MRNA,ZM,SNOW,PTON")
# Interface =============================================
with gr.Blocks() as demo:
with gr.Tab("Step 1: Portfolio Generator"):
gr.HTML(STEP1_TITLE)
with gr.Row():
with gr.Column(scale=1):
gr.Image(value="resources/robot1.jpg")
with gr.Column(scale=5):
gr.Textbox(value = portfolios_output, label="Generated Portfolios Example (Conservative, Growth, Balanced, & Agressive)", lines=40, interactive=False )
# Note: a portion of the Optimize Portfolio code was taken from Damian Boh open source code on Hugging Face and was rewritten for this application.
with gr.Tab("Step 2: Optimize Portfolio"):
gr.HTML(STEP3_TITLE)
with gr.Blocks() as app:
with gr.Row():
start_date = gr.Textbox("2013-01-01", label="Start Date")
end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
with gr.Row():
gr.HTML("<h1>Suggested Portfolios (Adjust as Needed)</h1>")
with gr.Row():
btn1 = gr.Button("Conservative")
ticker_string_conservative = gr.Textbox("KO,PG,JNJ,VZ,PFE,MCD,WMT,MMM,SO,DUK", label='Conservative')
btn2 = gr.Button("Growth")
ticker_string_growth = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM", label='Growth')
with gr.Row():
btn3 = gr.Button("Balanced")
ticker_string_balanced = gr.Textbox("AAPL,JPM,JNJ,PG,KO,MSFT,PFE,VZ,MMM,WMT", label='Balanced')
btn4 = gr.Button("Agressive")
ticker_string_agressive = gr.Textbox("TSLA,AMZN,NVDA,GOOGL,SHOP,SQ,MRNA,ZM,SNOW,PTON", label='Agressive')
'''
with gr.Row():
gr.HTML("<h1>Adjusted Portfolio </h1>")
with gr.Row():
ticker_string = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM", label='Adjusted')
with gr.Row():
btn = gr.Button("Get Optimized Portfolio")
'''
with gr.Row():
gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
with gr.Row():
expected_annual_return = gr.Text(label="Expected Annual Return")
annual_volatility = gr.Text(label="Annual Volatility")
sharpe_ratio = gr.Text(label="Sharpe Ratio")
with gr.Row():
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")
#Buttom Graphs
with gr.Row():
fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
fig_corr = gr.Plot(label="Correlation between Stocks")
with gr.Row():
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
'''
btn.click(fn=output_results, inputs=[start_date, end_date, ticker_string],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
'''
btn1.click(fn=output_results, inputs=[start_date, end_date, ticker_string_conservative],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
btn2.click(fn=output_results, inputs=[start_date, end_date, ticker_string_growth],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
btn3.click(fn=output_results, inputs=[start_date, end_date, ticker_string_balanced],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
btn4.click(fn=output_results, inputs=[start_date, end_date, ticker_string_agressive],
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
with gr.Tab("Step 3: Fine Tuning"):
gr.HTML(STEP2_TITLE)
run_button_crewai = gr.Button(value="Run", variant="primary", scale=1)
run_button_crewai.click(
fn=crewai_process,
inputs=gr.Textbox(lines=2, placeholder="Enter Research Topic Here..."),
outputs=gr.Textbox(label="Portfolio Analysis")
)
# For future upgrade
'''
with gr.Tab("Company Analysis"):
gr.HTML(TITLE1)
run_button_analysis.click(
fn=company_analysis,
inputs=[
gr.Textbox(label="Enter your OpenAI API Key:", type="password"),
gr.Textbox(label="Enter the Company Name:")
],
outputs=[
gr.Textbox(label="Language"),
gr.Textbox(label="Summary"),
gr.Textbox(label="Translated Email"),
gr.Textbox(label="Reply in English"),
gr.Textbox(label="Reply in Original Language")
]
)
with gr.Tab("Investment Strategy"):
gr.HTML(TITLE2)
gr.HTML(SUBTITLE)
gr.HTML(GETKEY)
with gr.Column():
google_key_component.render()
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
upload_button_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
upload_button_component.upload(
fn=upload,
inputs=[upload_button_component, chatbot_component],
outputs=[chatbot_component],
queue=False
)
with gr.Tab("Profit Prophet"):
gr.HTML(TITLE3)
with gr.Row():
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
with gr.Column(scale=1):
gr.Image(value = "resources/holder.png")
'''
demo.queue(max_size=99).launch(debug=False, show_error=True) |