File size: 37,958 Bytes
e6b4540
 
 
 
 
 
 
e0c7cec
 
 
 
de00c34
 
 
f9746d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de00c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266c0a0
489aeed
 
de00c34
 
035899a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7cec
 
02144c3
 
e0c7cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
 
489aeed
e6b4540
 
489aeed
cf2a9e1
 
 
e90b651
cf2a9e1
8dd1745
80a5f9c
e6b4540
80a5f9c
e6b4540
 
 
 
 
5e59417
e6b4540
 
 
 
 
d426a59
fbaef32
 
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d9022
e6b4540
 
 
 
 
80ab728
6064c2b
e6b4540
5e42be9
 
 
 
e6b4540
 
 
 
e0c7cec
 
 
3f6749c
745695e
e6b4540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7cec
e6b4540
 
 
 
 
 
 
 
 
 
 
ea3b15d
 
 
 
 
 
 
 
 
1d47132
ea3b15d
 
 
11d1cbf
ea3b15d
93dce7d
 
a6249ee
 
93dce7d
 
 
ea3b15d
 
 
 
 
 
 
 
93dce7d
 
a6249ee
 
93dce7d
 
 
 
 
69e13bb
 
 
 
93dce7d
 
 
 
8e2e2e9
93dce7d
a6249ee
93dce7d
 
 
ea3b15d
 
 
 
 
 
 
 
 
a6249ee
93dce7d
 
a6249ee
93dce7d
ea3b15d
 
 
93dce7d
 
 
 
 
 
 
 
21427ae
 
 
 
 
 
 
93dce7d
ea3b15d
 
 
 
93dce7d
 
ea3b15d
 
 
 
 
 
 
 
 
 
 
f9746d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c149a37
 
 
 
ec19f02
 
eb13913
f9746d7
ea3b15d
f9746d7
2ed1caf
e6b4540
2ed1caf
a5038fa
489aeed
035899a
 
b6302c6
035899a
c149a37
d30067e
29da034
 
d30067e
489aeed
f727e0f
eb13913
f727e0f
 
 
eb13913
9b457a9
266c0a0
c149a37
266c0a0
eb13913
266c0a0
3cc5085
eb13913
266c0a0
eb13913
266c0a0
9b457a9
3ae4b17
266c0a0
 
 
eb13913
f727e0f
9b457a9
f727e0f
 
 
 
 
 
 
 
 
40f2353
 
 
 
 
 
 
 
 
 
 
 
 
 
f5dde1c
9b457a9
eb13913
f727e0f
 
9b457a9
 
c149a37
f850c97
 
eb13913
 
f850c97
 
eb13913
 
f850c97
 
9b457a9
eb13913
f850c97
 
9b457a9
eb13913
29da034
d30067e
 
 
 
 
 
 
f727e0f
f60225b
 
 
02144c3
f727e0f
02144c3
ea074c0
cf2a9e1
e0c7cec
 
 
e8bc2e1
 
e0c7cec
 
e8bc2e1
 
 
 
 
d1b61fc
e0c7cec
 
ea074c0
 
cf2a9e1
e80434f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b4540
ea074c0
cf2a9e1
 
3679efa
 
8dd1745
3679efa
8dd1745
02144c3
46dbca8
85d6203
e6b4540
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
import os
import time
import uuid
from typing import List, Tuple, Optional, Dict, Union
import google.generativeai as genai
import gradio as gr
from PIL import Image
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain

from textwrap import dedent
import google.generativeai as genai


import yfinance as yf
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import EfficientFrontier
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import plotting
import copy
import numpy as np
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from datetime import datetime
import datetime


# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from langchain.tools.yahoo_finance_news import YahooFinanceNewsTool
from crewai.tools.browser_tools import BrowserTools
from crewai.tools.sec_tools import SECTools

# Google Langchain
from langchain_google_genai import GoogleGenerativeAI

#Crew imports
from crewai import Agent, Task, Crew, Process

# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')

# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
    raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")


STEP1_TITLE = """<h1 align="center"><a href="https://chat.openai.com/g/g-3ZNjAmguz-portfolio-investment-advisor">Custom GPT Portfolio Generator</a></h1>"""
STEP2_TITLE = """<h1 align="center">Create a Financial OutLook Report of Your Portfolio</h1>"""
STEP3_TITLE = """<h1 align="center">Optimize Your Portfolio to Maximize Return</h1>"""


portfolios_output = """
Creating a Conservative Portfolio

Title: Steady and Secure: A Conservative Portfolio Approach

Introduction:
In the world of investments, a conservative portfolio is akin to a steady ship in turbulent seas. It's designed for those who seek stability over high risks, focusing on preserving capital and generating regular income. This approach is particularly appealing to retirees or those nearing retirement, who prioritize safeguarding their wealth over aggressive growth.

Rational for Selection of Each Stock:

Coca-Cola (KO): A classic example of stability and consistent dividend payout, Coca-Cola's global brand strength makes it a reliable choice for conservative investors.
Procter & Gamble (PG): Known for its wide range of consumer products, PG offers consistent performance and a strong history of dividend payments.
Johnson & Johnson (JNJ): A leader in healthcare, JNJ's diversified portfolio and strong financials offer low volatility and dependable dividends.
Verizon Communications (VZ): As a telecom giant, Verizon provides essential services, ensuring steady demand and reliable dividends.
Pfizer (PFE): A pharmaceutical stalwart, Pfizer offers a blend of stability and moderate growth, backed by a solid dividend history.
McDonald's (MCD): A global fast-food leader, McDonald’s demonstrates resilient performance and steady dividends, even in economic downturns.
Walmart (WMT): The retail giant's consistent performance and dividend history make it a stable choice for conservative portfolios.
3M (MMM): Known for its innovation and diversified product line, 3M offers stability and a long history of dividend growth.
The Southern Company (SO): As a utility company, SO provides essential services, leading to consistent demand and steady dividends.
Duke Energy (DUK): Another utility company, Duke Energy's focus on essential services ensures stable revenues and dividends.
Conclusion:
This conservative portfolio is built on the bedrock of stability, resilience, and regular income. It's tailored for investors who prioritize capital preservation and steady income over high-risk, high-reward strategies.

Portfolio Tickers: KO, PG, JNJ, VZ, PFE, MCD, WMT, MMM, SO, DUK

Creating a Growth Portfolio

Title: Nurturing Wealth: A Growth-Oriented Portfolio Strategy

Introduction:

For the investor with an eye on the future and a stomach for some risk, a growth portfolio is the way to go. This strategy is ideal for those aiming for long-term capital appreciation. It typically includes stocks of companies with significant growth potential, such as those in technology, healthcare, and renewable energy sectors.

Rational for Selection of Each Stock:

Apple Inc. (AAPL): A leader in technology, Apple's continuous innovation and strong market presence make it a prime candidate for growth.
Amazon.com Inc. (AMZN): With its ever-expanding business and dominance in e-commerce and cloud computing, Amazon is poised for sustained growth.
Tesla Inc. (TSLA): At the forefront of the electric vehicle revolution, Tesla's growth potential in a transforming auto industry is substantial.
NVIDIA Corporation (NVDA): A key player in the gaming and AI sectors, NVIDIA's cutting-edge technology positions it for strong growth.
Alphabet Inc. (GOOGL): Google's parent company, with its diverse range of rapidly growing businesses, is a staple in any growth portfolio.
Microsoft Corporation (MSFT): A tech giant with consistent growth in cloud computing and software, Microsoft is a robust choice for growth.
Netflix, Inc. (NFLX): As a leader in streaming media, Netflix's ongoing global expansion and content creation suggest significant growth potential.
Visa Inc. (V): With the increasing shift to digital payments, Visa's global network positions it well for growth in fintech.
Mastercard Incorporated (MA): Similar to Visa, Mastercard's role in the growing digital payment sector offers strong growth prospects.
Salesforce.com, Inc. (CRM): As a leader in cloud-based customer relationship management software, Salesforce is well-positioned for growth in the digital transformation of businesses.
Conclusion:
This growth portfolio is designed for the long-term investor who seeks capital appreciation and is comfortable with higher risk. It leverages the potential of market leaders and innovators across various sectors, setting the stage for significant growth over time.

Portfolio Tickers: AAPL, AMZN, TSLA, NVDA, GOOGL, MSFT, NFLX, V, MA, CRM

Creating a Balanced Portfolio

Title: Harmonizing Growth and Stability: The Balanced Portfolio

Introduction:
A balanced portfolio is the middle ground in investment strategy, blending the growth potential of stocks with the stability of bonds and other income-generating assets. This approach aims to moderate risk while still offering opportunities for capital appreciation and income. It's well-suited for investors who desire a mix of growth and income with a moderate risk profile.

Rational for Selection of Each Stock:

Apple Inc. (AAPL): As a tech giant with a solid track record, Apple offers both growth potential and relative stability, a perfect fit for a balanced portfolio.
JPMorgan Chase & Co. (JPM): A leading financial institution, JPMorgan brings stability and potential for capital appreciation, along with steady dividends.
Johnson & Johnson (JNJ): A diversified healthcare company, JNJ offers stability and consistent dividends, making it a reliable choice for balanced investing.
Procter & Gamble (PG): With a wide array of consumer products, PG is known for its stability and consistent dividend payouts.
The Coca-Cola Company (KO): A global beverage leader, Coca-Cola provides steady income through dividends, along with potential for moderate growth.
Microsoft Corporation (MSFT): A blend of growth and stability, Microsoft's strong financials and innovative edge make it a balanced choice.
Pfizer Inc. (PFE): In the healthcare sector, Pfizer offers a combination of stability, dividend income, and potential growth.
Verizon Communications Inc. (VZ): As a telecom giant, Verizon provides stable dividends and operates in a relatively stable industry.
3M Company (MMM): Known for its diversified industrial products, 3M offers a balance of stability and growth potential.
Walmart Inc. (WMT): The retail giant's consistent performance and defensive nature in economic downturns make it a balanced choice.
Conclusion:
This balanced portfolio is carefully crafted to provide a blend of stability and growth. It's an ideal choice for investors seeking a diversified approach, with a mix of reliable income and potential for capital appreciation.

Portfolio Tickers: AAPL, JPM, JNJ, PG, KO, MSFT, PFE, VZ, MMM, WMT

Creating an Aggressive Portfolio

Title: Pursuit of High Returns: An Aggressive Portfolio Strategy

Introduction:
The aggressive portfolio is designed for the investor who is willing to embrace high risk in pursuit of high returns. This strategy often involves investing in high-growth stocks, emerging market securities, and innovative sectors. It's most suitable for investors with a long-term horizon and a high tolerance for market volatility.

Rational for Selection of Each Stock:

Tesla, Inc. (TSLA): A leader in the electric vehicle industry, Tesla represents high growth potential in the evolving automotive sector.
Amazon.com, Inc. (AMZN): Amazon's continuous expansion into new markets and technologies positions it for aggressive growth.
NVIDIA Corporation (NVDA): With its leading role in AI and gaming, NVIDIA is poised for significant growth in high-tech sectors.
Alphabet Inc. (GOOGL): The parent company of Google, Alphabet has diverse and rapidly growing business segments, making it a strong candidate for aggressive growth.
Shopify Inc. (SHOP): As an e-commerce platform, Shopify has high growth potential in the expanding online retail space.
Square, Inc. (SQ): Operating in the fintech space, Square's innovative payment solutions position it for aggressive growth.
Moderna, Inc. (MRNA): A biotech company with a focus on mRNA technology, Moderna has high growth potential in the healthcare sector.
Zoom Video Communications, Inc. (ZM): A leader in remote communication solutions, Zoom has the potential for aggressive growth in the evolving workplace.
Snowflake Inc. (SNOW): A cloud computing company, Snowflake's innovative data platform positions it for high growth in the tech sector.
Peloton Interactive, Inc. (PTON): In the fitness technology space, Peloton's innovative business model offers high growth potential.
Conclusion:
This aggressive portfolio is tailored for those seeking exponential growth and who are comfortable with high levels of risk. It leverages the potential of companies in rapidly growing industries and innovative sectors, making it suitable for long-term, risk-tolerant investors.

Portfolio Tickers: TSLA, AMZN, NVDA, GOOGL, SHOP, SQ, MRNA, ZM, SNOW, PTON

Summary of Portfolio Strategies

Overview:
In this comprehensive investment guide, we explored four distinct portfolio strategies, each tailored to different investor profiles and risk tolerances. From the steady and secure conservative approach to the high-risk, high-reward aggressive strategy, these portfolios offer a range of options for investors with varying objectives and time horizons.

Summary of Each Portfolio:

Conservative Portfolio: Focused on stability and income generation, this portfolio includes stocks like KO, PG, and JNJ. Ideal for risk-averse investors, especially those nearing retirement, it emphasizes capital preservation and steady dividend income.

Growth Portfolio: Targeting long-term capital appreciation, this portfolio features companies like AAPL, AMZN, and TSLA. Suited for investors with a longer horizon and higher risk tolerance, it focuses on stocks with significant growth potential.

Balanced Portfolio: Aiming for a middle-ground approach, this portfolio includes a mix of stable and growth-oriented stocks like AAPL, JPM, and MSFT. It's designed for investors seeking both income and moderate capital appreciation, with a diversified risk profile.

Aggressive Portfolio: Geared towards maximum growth, this strategy includes high-growth stocks like TSLA, NVDA, and GOOGL. Suitable for investors with a high risk tolerance and a long-term investment horizon, it focuses on sectors with high potential for rapid growth.

Conclusion:
These tailored portfolios offer a range of investment strategies to suit different investor needs. Whether prioritizing income and stability or seeking aggressive growth, each portfolio is constructed with a specific investment goal and risk tolerance in mind.
"""


# LangChain function for company analysis

# For furture upgrade

def company_analysis(api_key: str, company_name: str) -> dict:
    
    os.environ['OPENAI_API_KEY'] = api_key  # Set the OpenAI API key as an environment variable
    llm = ChatOpenAI()
    '''
    # Identify the email's language
    template1 = "Return the language this email is written in:\n{email}.\nONLY return the language it was written in."
    prompt1 = ChatPromptTemplate.from_template(template1)
    chain_1 = LLMChain(llm=llm, prompt=prompt1, output_key="language")

    # Translate the email to English
    template2 = "Translate this email from {language} to English. Here is the email:\n" + email
    prompt2 = ChatPromptTemplate.from_template(template2)
    chain_2 = LLMChain(llm=llm, prompt=prompt2, output_key="translated_email")

    # Provide a summary in English
    template3 = "Create a short summary of this email:\n{translated_email}"
    prompt3 = ChatPromptTemplate.from_template(template3)
    chain_3 = LLMChain(llm=llm, prompt=prompt3, output_key="summary")

    # Provide a reply in English
    template4 = "Reply to the sender of the email giving a plausible reply based on the {summary} and a promise to address issues"
    prompt4 = ChatPromptTemplate.from_template(template4)
    chain_4 = LLMChain(llm=llm, prompt=prompt4, output_key="reply")

    # Provide a translation back to the original language
    template5 = "Translate the {reply} back to the original {language} of the email."
    prompt5 = ChatPromptTemplate.from_template(template5)
    chain_5 = LLMChain(llm=llm, prompt=prompt5, output_key="translated_reply")
    

    seq_chain = SequentialChain(chains=[chain_1, chain_2, chain_3, chain_4, chain_5],
                                input_variables=['email'],
                                output_variables=['language', 'translated_email', 'summary', 'reply', 'translated_reply'],
                                verbose=True)
    '''                            
    return seq_chain(email)



print("google-generativeai:", genai.__version__)


GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")



TITLE1 = """<h1 align="center">Company Analysis</h1>"""
TITLE2 = """<h1 align="center">Investment Strategy</h1>"""
TITLE3 = """<h1 align="center">Profit Prophet</h1>"""

SUBTITLE = """<h2 align="center">Strategy Agent built with Gemini Pro and Gemini Pro Vision API</h2>"""
GETKEY = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <span>Get an API key
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""


AVATAR_IMAGES = (
    None,
    "https://media.roboflow.com/spaces/gemini-icon.png"
)

movie_script_analysis = ""


IMAGE_CACHE_DIRECTORY = "/tmp"
IMAGE_WIDTH = 512
CHAT_HISTORY = List[Tuple[Optional[Union[Tuple[str], str]], Optional[str]]]


def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))


def cache_pil_image(image: Image.Image) -> str:
    image_filename = f"{uuid.uuid4()}.jpeg"
    os.makedirs(IMAGE_CACHE_DIRECTORY, exist_ok=True)
    image_path = os.path.join(IMAGE_CACHE_DIRECTORY, image_filename)
    image.save(image_path, "JPEG")
    return image_path


def preprocess_chat_history(
    history: CHAT_HISTORY
) -> List[Dict[str, Union[str, List[str]]]]:
    messages = []
    for user_message, model_message in history:
        if isinstance(user_message, tuple):
            pass
        elif user_message is not None:
            messages.append({'role': 'user', 'parts': [user_message]})
        if model_message is not None:
            messages.append({'role': 'model', 'parts': [model_message]})
    return messages


def upload(files: Optional[List[str]], chatbot: CHAT_HISTORY) -> CHAT_HISTORY:
    for file in files:
        image = Image.open(file).convert('RGB')
        image = preprocess_image(image)
        image_path = cache_pil_image(image)
        chatbot.append(((image_path,), None))
    return chatbot


def user(text_prompt: str, chatbot: CHAT_HISTORY):
    if text_prompt:
        chatbot.append((text_prompt, None))
    return "", chatbot


def bot(
    google_key: str,
    files: Optional[List[str]],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: CHAT_HISTORY
):
    if len(chatbot) == 0:
        return chatbot

    google_key = google_key if google_key else GOOGLE_API_KEY
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    if files:
        text_prompt = [chatbot[-1][0]] \
            if chatbot[-1][0] and isinstance(chatbot[-1][0], str) \
            else []
        image_prompt = [Image.open(file).convert('RGB') for file in files]
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            text_prompt + image_prompt,
            stream=True,
            generation_config=generation_config)
    else:
        messages = preprocess_chat_history(chatbot)
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            messages,
            stream=True,
            generation_config=generation_config)

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot


google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
    visible=GOOGLE_API_KEY is None
)
chatbot_component = gr.Chatbot(
    label='Gemini Pro Vision',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2,
    height=400
)
text_prompt_component = gr.Textbox(value=movie_script_analysis,
   show_label=False, autofocus=True, scale=8, lines=8
)




upload_button_component = gr.UploadButton(
    label="Upload Images", file_count="multiple", file_types=["image"], scale=1
)
run_button_component = gr.Button(value="Run", variant="primary", scale=1)

run_button_analysis = gr.Button(value="Run", variant="primary", scale=1)



temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature controls the degree of randomness in token selection. Lower "
        "temperatures are good for prompts that expect a true or correct response, "
        "while higher temperatures can lead to more diverse or unexpected results. "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token limit determines the maximum amount of text output from one prompt. A "
        "token is approximately four characters. The default value is 2048."
    ))
stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "A stop sequence is a series of characters (including spaces) that stops "
        "response generation if the model encounters it. The sequence is not included "
        "as part of the response. You can add up to five stop sequences."
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k changes how the model selects tokens for output. A top-k of 1 means the "
        "selected token is the most probable among all tokens in the model’s "
        "vocabulary (also called greedy decoding), while a top-k of 3 means that the "
        "next token is selected from among the 3 most probable tokens (using "
        "temperature)."
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p changes how the model selects tokens for output. Tokens are selected "
        "from most probable to least until the sum of their probabilities equals the "
        "top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
        "and .1 and the top-p value is .5, then the model will select either A or B as "
        "the next token (using temperature). "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]


bot_inputs = [
    google_key_component,
    upload_button_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]





# Gmix ++++++++++++++++++++++++++++++++++++++++++++++++

#Crew imports
from crewai import Agent, Task, Crew, Process


# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)

def crewai_process(portfolio_stocks):
    # Define your agents with roles and goals
    equityanalyst = Agent(
        role='Equity Analyst',
        goal=f'''Analyzes and evaluates individual stocks in the porfolio {portfolio_stocks} by examining company financials, 
        market trends, and industry dynamics.''',
        backstory="""Alex has a strong background in finance and economics, having graduated from a top university. 
        They worked for several years in a leading investment bank, where they honed their skills in analyzing financial 
        statements and market trends. Alex is passionate about the stock market and has a knack for identifying undervalued stocks.""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                GeminiSearchTools.gemini_search
      ]

    )
    portfoliomanager = Agent(
        role='Portfolio Manager',
        goal=f'''Determines the appropriate mix of assets {portfolio_stocks} in the portfolio based on investment objectives and 
        risk tolerance.''',
        backstory="""Samira holds an MBA with a specialization in investment management and has over a decade of experience in 
        asset management. She has a proven track record of managing diverse investment portfolios and achieving consistent returns. 
        Samira excels in strategic thinking and is adept at adjusting investment strategies based on changing market conditions.""",
        verbose=True,
        allow_delegation=True,
        llm = gemini_llm,
        tools=[
                GeminiSearchTools.gemini_search
      ]
     
        # Add tools and other optional parameters as needed
    )

    riskanalyst = Agent(
        role='Risk Analyst',
        goal='''Identifies and evaluates the various risks  associated with the portfolio''',
        backstory="""David has a master’s degree in financial engineering and started his career in 
        risk management at a major insurance company. His expertise lies in quantitative analysis and 
        risk modeling. David is particularly skilled in using advanced statistical techniques to assess and mitigate risks.""",
        verbose=True,
        allow_delegation=True,
        llm = gemini_llm
     
        # Add tools and other optional parameters as needed
    )

    # Create tasks for your agents
    task1 = Task(
        description=f'''Alex will perform an in-depth analysis of a specific market sector that is currently 
        underrepresented in the portfolio {portfolio_stocks}. This involves evaluating the growth potential, 
        competitive landscape, and financial health of leading companies within that sector. The goal is to 
        identify potential investment opportunities that could offer higher returns and enhance the portfolios diversity''',
        agent=equityanalyst
    )

    task2 = Task(
        description="""Using the insights from the Equity Analyst's report, review the current asset allocation of the portfolio 
        and compare it against the targeted allocation that aligns with the investor's risk tolerance and investment objectives. 
        Given recent market shifts, she decides to tactically adjust the allocation, perhaps by increasing the weight in equities 
        or specific sectors that are forecasted to outperform. """,
        agent=portfoliomanager
    )

    task3 = Task(
        description="""Review and synthesize the analyses provided by the
        Equity Analyst and the Portfolio Manager. Combine these insights to form a comprehensive
        investment recommendation. 
        You MUST Consider all aspects, including financial health, market sentiment, and qualitative data from EDGAR filings.
        Make sure to include a section that shows insider trading activity, and upcoming events like earnings.
        Your final answer MUST be a recommendation for your customer. It should be a full super detailed report, providing a 
        clear investment stance and strategy with supporting evidence. Provide insight that my enhance the portfolio""",
        agent=portfoliomanager
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[equityanalyst, portfoliomanager, riskanalyst],
        tasks=[task1, task2, task3],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result



# Portfolio Analysis +++++++++++++++++++++++++++++++++++

def plot_cum_returns(data, title):    
    daily_cum_returns = 1 + data.dropna().pct_change()
    daily_cum_returns = daily_cum_returns.cumprod()*100
    fig = px.line(daily_cum_returns, title=title)
    return fig

def plot_efficient_frontier_and_max_sharpe(mu, S): 
    # Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
    ef = EfficientFrontier(mu, S)
    fig, ax = plt.subplots(figsize=(6,4))
    ef_max_sharpe = copy.deepcopy(ef)
    plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
    # Find the max sharpe portfolio
    ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
    ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
    ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
    # Generate random portfolios with random weights
    n_samples = 1000
    w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
    rets = w.dot(ef.expected_returns)
    stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
    sharpes = rets / stds
    ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
    # Output
    ax.legend()
    return fig

def output_results(start_date, end_date, tickers_string):
    tickers = tickers_string.split(',')
    
    # Get Stock Prices
    stocks_df = yf.download(tickers, start=start_date, end=end_date)['Adj Close']
    
    # Plot Individual Stock Prices
    fig_indiv_prices = px.line(stocks_df, title='Price of Individual Stocks')
        
    # Plot Individual Cumulative Returns
    fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with $100')
    
    # Calculatge and Plot Correlation Matrix between Stocks
    corr_df = stocks_df.corr().round(2)
    fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')

    # Calculate expected returns and sample covariance matrix for portfolio optimization later
    mu = expected_returns.mean_historical_return(stocks_df)
    S = risk_models.sample_cov(stocks_df)

    # Plot efficient frontier curve
    fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)

    # Get optimized weights
    ef = EfficientFrontier(mu, S)
    ef.max_sharpe(risk_free_rate=0.04)
    weights = ef.clean_weights()
    expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
    
    expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
    '{}%'.format((annual_volatility*100).round(2)), \
    '{}%'.format((sharpe_ratio*100).round(2))
    
    weights_df = pd.DataFrame.from_dict(weights, orient = 'index')
    weights_df = weights_df.reset_index()
    weights_df.columns = ['Tickers', 'Weights']

    # Calculate returns of portfolio with optimized weights
    stocks_df['Optimized Portfolio'] = 0
    for ticker, weight in weights.items():
        stocks_df['Optimized Portfolio'] += stocks_df[ticker]*weight

    # Plot Cumulative Returns of Optimized Portfolio
    fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with $100')

    return  fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
            expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns

    ticker_string_conservative = gr.Textbox("KO,PG,JNJ,VZ,PFE,MCD,WMT,MMM,SO,DUK")
    ticker_string_growth = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM")
    ticker_string_balanced = gr.Textbox("AAPL,JPM,JNJ,PG,KO,MSFT,PFE,VZ,MMM,WMT")
    ticker_string_agressive = gr.Textbox("TSLA,AMZN,NVDA,GOOGL,SHOP,SQ,MRNA,ZM,SNOW,PTON")
    



# Interface =============================================


with gr.Blocks() as demo:

    with gr.Tab("Step 1: Portfolio Generator"):
        gr.HTML(STEP1_TITLE)
        with gr.Row():
            with gr.Column(scale=1):
                gr.Image(value="resources/robot1.jpg")
            with gr.Column(scale=5):
                gr.Textbox(value = portfolios_output, label="Generated Portfolios Example (Conservative, Growth, Balanced, & Agressive)", lines=40, interactive=False )
                    
    # Note: a portion of the Optimize Portfolio code was taken from Damian Boh open source code on Hugging Face and was rewritten for this application.    
    
    with gr.Tab("Step 2: Optimize Portfolio"):
        gr.HTML(STEP3_TITLE)
        with gr.Blocks() as app:
            
            with gr.Row():
                start_date = gr.Textbox("2013-01-01", label="Start Date")
                end_date = gr.Textbox(datetime.datetime.now().date(), label="End Date")
            with gr.Row():
                gr.HTML("<h1>Suggested Portfolios (Adjust as Needed)</h1>")
            with gr.Row():
                btn1 = gr.Button("Conservative")
                ticker_string_conservative = gr.Textbox("KO,PG,JNJ,VZ,PFE,MCD,WMT,MMM,SO,DUK", label='Conservative') 
                btn2 = gr.Button("Growth")
                ticker_string_growth = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM", label='Growth')
            with gr.Row():    
                btn3 = gr.Button("Balanced")
                ticker_string_balanced = gr.Textbox("AAPL,JPM,JNJ,PG,KO,MSFT,PFE,VZ,MMM,WMT", label='Balanced')    
                btn4 = gr.Button("Agressive")
                ticker_string_agressive = gr.Textbox("TSLA,AMZN,NVDA,GOOGL,SHOP,SQ,MRNA,ZM,SNOW,PTON", label='Agressive')
            '''
            with gr.Row():
                gr.HTML("<h1>Adjusted Portfolio </h1>")  
            with gr.Row():
                ticker_string = gr.Textbox("AAPL,AMZN,TSLA,NVDA,GOOGL,MSFT,NFLX,V,MA,CRM", label='Adjusted')
            with gr.Row(): 
                btn = gr.Button("Get Optimized Portfolio")
            '''
               
            with gr.Row():
                gr.HTML("<h3>Optimizied Portfolio Metrics</h3>")
                
            with gr.Row():
                expected_annual_return = gr.Text(label="Expected Annual Return")
                annual_volatility = gr.Text(label="Annual Volatility")
                sharpe_ratio = gr.Text(label="Sharpe Ratio")            
           
            with gr.Row():        
                fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of $100)")
                weights_df = gr.DataFrame(label="Optimized Weights of Each Ticker")

            #Buttom Graphs
            
            with gr.Row():
                fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
                fig_corr = gr.Plot(label="Correlation between Stocks")
            
            with gr.Row():
                fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
                fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with $100")
               

            '''
            btn.click(fn=output_results, inputs=[start_date, end_date, ticker_string], 
                      outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
            '''
            
            btn1.click(fn=output_results, inputs=[start_date, end_date, ticker_string_conservative], 
                   outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])

            btn2.click(fn=output_results, inputs=[start_date, end_date, ticker_string_growth], 
                  outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])

            btn3.click(fn=output_results, inputs=[start_date, end_date, ticker_string_balanced], 
                  outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])
            
            btn4.click(fn=output_results, inputs=[start_date, end_date, ticker_string_agressive], 
                  outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,   \
                    expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns])       
           

    with gr.Tab("Step 3: Fine Tuning"): 
        gr.HTML(STEP2_TITLE)
        run_button_crewai = gr.Button(value="Run", variant="primary", scale=1)
        run_button_crewai.click(
            fn=crewai_process,
            inputs=gr.Textbox(lines=2, placeholder="Enter Research Topic Here..."),
            outputs=gr.Textbox(label="Portfolio Analysis")
        )



        
    # For future upgrade
    
    '''
    with gr.Tab("Company Analysis"):
        gr.HTML(TITLE1)
        run_button_analysis.click(
        fn=company_analysis,
        inputs=[
            gr.Textbox(label="Enter your OpenAI API Key:", type="password"),
            gr.Textbox(label="Enter the Company Name:")
        ],
        outputs=[
            gr.Textbox(label="Language"),
            gr.Textbox(label="Summary"),
            gr.Textbox(label="Translated Email"),
            gr.Textbox(label="Reply in English"),
            gr.Textbox(label="Reply in Original Language")
        ]
        )

      
    with gr.Tab("Investment Strategy"):    
        gr.HTML(TITLE2)
        gr.HTML(SUBTITLE)
        gr.HTML(GETKEY)
        with gr.Column():
            google_key_component.render()
            chatbot_component.render()
            with gr.Row():
                text_prompt_component.render()
                upload_button_component.render()
                run_button_component.render()
            with gr.Accordion("Parameters", open=False):
                temperature_component.render()
                max_output_tokens_component.render()
                stop_sequences_component.render()
                with gr.Accordion("Advanced", open=False):
                    top_k_component.render()
                    top_p_component.render()
    
        run_button_component.click(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        text_prompt_component.submit(
            fn=user,
            inputs=user_inputs,
            outputs=[text_prompt_component, chatbot_component],
            queue=False
        ).then(
            fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
        )
    
        upload_button_component.upload(
            fn=upload,
            inputs=[upload_button_component, chatbot_component],
            outputs=[chatbot_component],
            queue=False
        )

    with gr.Tab("Profit Prophet"):
        gr.HTML(TITLE3)

        with gr.Row():
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
            with gr.Column(scale=1):
                gr.Image(value = "resources/holder.png")
    '''

        
demo.queue(max_size=99).launch(debug=False, show_error=True)