Spaces:
Running
Running
File size: 11,930 Bytes
f967233 f4b4efa 7872237 f4b4efa f967233 9fa3305 7872237 9fa3305 7872237 9fa3305 7872237 9fa3305 7872237 9fa3305 7872237 9fa3305 f4b4efa 7872237 f4b4efa 7872237 f4b4efa 7872237 f4b4efa f967233 0abb0c9 2da8bfd 0abb0c9 f967233 f4b4efa 7872237 f4b4efa 7872237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import os
import string
from typing import Any, Dict, List, Tuple, Union
import chromadb
import numpy as np
import openai
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from langchain.document_loaders import TextLoader
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from scipy.spatial.distance import cosine
openai.api_key = os.environ["OPENAI_API_KEY"]
def merge_dataframes(dataframes: List[pd.DataFrame]) -> pd.DataFrame:
"""
Merges a list of pandas DataFrames into a single DataFrame.
This function concatenates the given DataFrames and filters the resulting DataFrame to only include the columns 'context', 'questions', and 'answers'.
Parameters:
dataframes (List[pd.DataFrame]): A list of DataFrames to be merged.
Returns:
pd.DataFrame: The concatenated DataFrame containing only the specified columns.
"""
# Concatenate the list of dataframes
combined_dataframe = pd.concat(
dataframes, ignore_index=True
) # Combine all dataframes into one
# Ensure that the resulting dataframe only contains the columns "context", "questions", "answers"
combined_dataframe = combined_dataframe[
["context", "questions", "answers"]
] # Filter for specific columns
return combined_dataframe # Return the merged and filtered DataFrame
def call_chatgpt(prompt: str) -> str:
"""
Uses the OpenAI API to generate an AI response to a prompt.
Args:
prompt: A string representing the prompt to send to the OpenAI API.
Returns:
A string representing the AI's generated response.
"""
# Use the OpenAI API to generate a response based on the input prompt.
response = openai.Completion.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt,
temperature=0.5,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
# Extract the text from the first (and only) choice in the response output.
ans = response.choices[0]["text"]
# Return the generated AI response.
return ans
def openai_text_embedding(prompt: str) -> str:
"""
Retrieves the text embedding for a given prompt using OpenAI's text-embedding model.
This function utilizes OpenAI's API to generate an embedding for the input text. It specifically uses the "text-embedding-ada-002" model.
Parameters:
prompt (str): The text input for which to generate an embedding.
Returns:
str: A string representation of the text embedding.
"""
# Call OpenAI API to create a text embedding
return openai.Embedding.create(input=prompt, model="text-embedding-ada-002")[
"data"
][0][
"embedding"
] # Retrieve the embedding from the response
def calculate_sts_openai_score(sentence1: str, sentence2: str) -> float:
"""
Calculates the Semantic Textual Similarity (STS) between two sentences using OpenAI's text-embedding model.
This function computes embeddings for each sentence and then calculates the cosine similarity between these embeddings. A higher score indicates greater similarity.
Parameters:
sentence1 (str): The first sentence for similarity comparison.
sentence2 (str): The second sentence for similarity comparison.
Returns:
float: The STS score representing the similarity between sentence1 and sentence2.
"""
# Compute sentence embeddings
embedding1 = openai_text_embedding(sentence1) # Flatten the embedding array
embedding2 = openai_text_embedding(sentence2) # Flatten the embedding array
# Convert embeddings to NumPy arrays
embedding1 = np.asarray(embedding1)
embedding2 = np.asarray(embedding2)
# Calculate cosine similarity between the embeddings
# Since 'cosine' returns the distance, 1 - distance is used to get similarity
similarity_score = 1 - cosine(embedding1, embedding2)
return similarity_score
def add_dist_score_column(
dataframe: pd.DataFrame,
sentence: str,
) -> pd.DataFrame:
"""
Adds a new column to the provided DataFrame with STS (Semantic Textual Similarity) scores,
calculated between a given sentence and each question in the 'questions' column of the DataFrame.
The DataFrame is then sorted by this new column in descending order and the top 5 rows are returned.
Parameters:
dataframe (pd.DataFrame): A pandas DataFrame containing a 'questions' column.
sentence (str): The sentence against which to compute STS scores for each question in the DataFrame.
Returns:
pd.DataFrame: A DataFrame containing the original data along with the new 'stsopenai' column,
sorted by the 'stsopenai' column, and limited to the top 5 entries with the highest scores.
"""
# Calculate the STS score between `sentence` and each row's `question`
dataframe["stsopenai"] = dataframe["questions"].apply(
lambda x: calculate_sts_openai_score(str(x), sentence)
)
# Sort the dataframe by the newly added 'stsopenai' column in descending order
sorted_dataframe = dataframe.sort_values(by="stsopenai", ascending=False)
# Return the top 5 rows from the sorted dataframe
return sorted_dataframe.iloc[:5, :]
def convert_to_list_of_dict(df: pd.DataFrame) -> List[Dict[str, str]]:
"""
Reads in a pandas DataFrame and produces a list of dictionaries with two keys each, 'question' and 'answer.'
Args:
df: A pandas DataFrame with columns named 'questions' and 'answers'.
Returns:
A list of dictionaries, with each dictionary containing a 'question' and 'answer' key-value pair.
"""
# Initialize an empty list to store the dictionaries
result = []
# Loop through each row of the DataFrame
for index, row in df.iterrows():
# Create a dictionary with the current question and answer
qa_dict_quest = {"role": "user", "content": row["questions"]}
qa_dict_ans = {"role": "assistant", "content": row["answers"]}
# Add the dictionary to the result list
result.append(qa_dict_quest)
result.append(qa_dict_ans)
# Return the list of dictionaries
return result
def query(payload: Dict[str, Any]) -> Dict[str, Any]:
"""
Sends a JSON payload to a predefined API URL and returns the JSON response.
Args:
payload (Dict[str, Any]): The JSON payload to be sent to the API.
Returns:
Dict[str, Any]: The JSON response received from the API.
"""
# API endpoint URL
API_URL = "https://sks7h7h5qkhoxwxo.us-east-1.aws.endpoints.huggingface.cloud"
# Headers to indicate both the request and response formats are JSON
headers = {"Accept": "application/json", "Content-Type": "application/json"}
# Sending a POST request with the JSON payload and headers
response = requests.post(API_URL, headers=headers, json=payload)
# Returning the JSON response
return response.json()
def llama2_7b_ysa(prompt: str) -> str:
"""
Queries a model and retrieves the generated text based on the given prompt.
This function sends a prompt to a model (presumably named 'llama2_7b') and extracts
the generated text from the model's response. It's tailored for handling responses
from a specific API or model query structure where the response is expected to be
a list of dictionaries, with at least one dictionary containing a key 'generated_text'.
Parameters:
- prompt (str): The text prompt to send to the model.
Returns:
- str: The generated text response from the model.
Note:
- The function assumes that the 'query' function is previously defined and accessible
within the same scope or module. It should send a request to the model and return
the response in a structured format.
- The 'parameters' dictionary is passed empty but can be customized to include specific
request parameters as needed by the model API.
"""
# Define the query payload with the prompt and any additional parameters
query_payload: Dict[str, Any] = {
"inputs": prompt,
"parameters": {"max_new_tokens": 20},
}
# Send the query to the model and store the output response
output = query(query_payload)
# Extract the 'generated_text' from the first item in the response list
response: str = output[0]["generated_text"]
return response
def quantize_to_4bit(arr: Union[np.ndarray, Any]) -> np.ndarray:
"""
Converts an array to a 4-bit representation by normalizing and scaling its values.
The function first checks if the input is an instance of numpy ndarray,
if not, it converts the input into a numpy ndarray. Then, it normalizes
the values of the array to be between 0 and 1. Finally, it scales these
normalized values to the range of 0-15, corresponding to 4-bit integers,
and returns this array of integers.
Parameters:
arr (Union[np.ndarray, Any]): An array or any type that can be converted to a numpy ndarray.
Returns:
np.ndarray: A numpy ndarray containing the input data quantized to 4-bit representation.
Examples:
>>> quantize_to_4bit([0, 128, 255])
array([ 0, 7, 15])
"""
if not isinstance(arr, np.ndarray): # Check if the input is a numpy array
arr = np.array(arr) # Convert to numpy array if not already
arr_min = arr.min() # Find minimum value in the array
arr_max = arr.max() # Find maximum value in the array
# Normalize array values to a [0, 1] range
normalized_arr = (arr - arr_min) / (arr_max - arr_min)
# Scale normalized values to a 0-15 range (4-bit) and convert to integer
return np.round(normalized_arr * 15).astype(int)
def quantized_influence(arr1: np.ndarray, arr2: np.ndarray) -> float:
"""
Calculates a weighted measure of influence between two arrays based on their quantized (4-bit) versions.
This function first quantizes both input arrays to 4-bit representations and then calculates a weighting based
on the unique values of the first array's quantized version. It uses these weights to compute local averages
within the second array's quantized version, assessing the influence of the first array on the second.
The influence is normalized by the standard deviation of the second array's quantized version.
Parameters:
arr1 (np.ndarray): The first input numpy array.
arr2 (np.ndarray): The second input numpy array.
Returns:
float: The calculated influence value, representing a weighted average that has been normalized.
Note:
Both inputs must be numpy ndarrays and it's expected that a function named `quantize_to_4bit`
exists for converting an array to its 4-bit representation.
"""
arr1_4bit = quantize_to_4bit(arr1) # Quantize the first array to 4-bit
arr2_4bit = quantize_to_4bit(arr2) # Quantize the second array to 4-bit
unique_values = np.unique(
arr1_4bit
) # Get the unique 4-bit values from the first array
y_bar_global = np.mean(
arr2_4bit
) # Calculate the global mean of the second array's 4-bit version
# Compute the sum of squares of the differences between local and global means,
# each weighted by the square of the count of values in the local mean
weighted_local_averages = [
(np.mean((arr2_4bit[arr1_4bit == val]) - y_bar_global) ** 2)
* len(arr2_4bit[arr1_4bit == val]) ** 2
for val in unique_values
]
# Return normalized weighted mean by dividing by the standard deviation of the second array's 4-bit version
return np.mean(weighted_local_averages) / np.std(arr2_4bit)
|