Spaces:
Sleeping
Sleeping
File size: 9,170 Bytes
1cfb5a5 c86dfe3 e06a0ac 1cfb5a5 fe0fab6 1cfb5a5 d8c8f99 fe0fab6 1cfb5a5 a01dcd6 1cfb5a5 fe0fab6 1cfb5a5 e99c6b4 8746f0d e99c6b4 1cfb5a5 7a6396f b1f2ae2 1cfb5a5 25986b9 1cfb5a5 e06a0ac 1cfb5a5 a54ab23 fe0fab6 1cfb5a5 2376e6b 1cfb5a5 fe0fab6 1cfb5a5 ef5e1af 1cfb5a5 6065dfd 1cfb5a5 e99c6b4 1cfb5a5 beacb7a e44c331 beacb7a e06a0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
# import peft
import spaces
import requests
import copy
from PIL import Image, ImageDraw, ImageFont
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import random
import numpy as np
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
models = {
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
'dwb2023/florence2-large-bccd-base-ft': AutoModelForCausalLM.from_pretrained('dwb2023/florence2-large-bccd-base-ft', trust_remote_code=True).to("cuda").eval(),
}
processors = {
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
'dwb2023/florence2-large-bccd-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
}
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
@spaces.GPU
def run_example(task_prompt, image, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'):
model = models[model_id]
processor = processors[model_id]
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer, generated_text
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None, model_id='dwb2023/florence2-large-bccd-base-ft'):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Object Detection':
task_prompt = '<OD>'
parsed_od, generated_od = run_example(task_prompt, image, model_id=model_id)
fig = plot_bbox(image, parsed_od['<OD>'])
return parsed_od, generated_od, fig_to_pil(fig)
else:
return "", None # Return empty string and None for unknown task prompts
single_task_list =[
'Object Detection'
]
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
gr.Markdown("## 🧬OmniScience - building teams of fine tuned VLM models for diagnosis and detection 🔧")
gr.Markdown("- 🔬Florence-2 Model Proof of Concept, focusing on Object Detection <OD> tasks.")
gr.Markdown("- Fine-tuned for 🩸Blood Cell Detection using the [Roboflow BCCD dataset](https://universe.roboflow.com/roboflow-100/bccd-ouzjz/dataset/2), this model can detect blood cells and types in images.")
gr.Markdown("")
gr.Markdown("BCCD Datasets on Hugging Face:")
gr.Markdown("- [🌺 Florence 2](https://huggingface.co/datasets/dwb2023/roboflow100-bccd-florence2/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg), [💎 PaliGemma](https://huggingface.co/datasets/dwb2023/roboflow-bccd-paligemma/viewer/default/test?q=BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg)")
with gr.Tab(label="Florence-2 Object Detection"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='dwb2023/florence2-large-bccd-base-ft')
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Object Detection")
text_input = gr.Textbox(label="Text Input", placeholder="Not used for Florence-2 Object Detection")
submit_btn = gr.Button(value="Submit")
with gr.Column():
with gr.Accordion("Object Detection - Generated Text", open=False):
generated_od = gr.Textbox(label="Generated Text")
with gr.Accordion("Object Detection - Parsed Text", open=False):
parsed_od = gr.Textbox(label="Parsed Text")
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["examples/bccd-test/BloodImage_00038_jpg.rf.1b0ce1635e11b3b49302de527c86bb02.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00044_jpg.rf.1c44102fcdf64fd178f1f16bb988d5cf.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00062_jpg.rf.fbed5373cd2e0e732092ed5c7b28aa19.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00090_jpg.rf.7e3d419774b20ef93d4ec6c4be8f64df.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00099_jpg.rf.0a65e56401cdd71253e7bc04917c3558.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00112_jpg.rf.6b8d185de08e65c6d765c824bb76ec68.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00113_jpg.rf.ab69dfaa52c1b3249cf44fa66afbb619.jpg", 'Object Detection'],
["examples/bccd-test/BloodImage_00120_jpg.rf.4a2f84ca3564ef453b12ceb9c852e32e.jpg", 'Object Detection'],
],
inputs=[input_img, task_prompt],
outputs=[parsed_od, generated_od, output_img],
fn=process_image,
cache_examples=False,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, model_selector], [parsed_od, generated_od, output_img])
gr.Markdown("## 🚀Other Cool Stuff:")
gr.Markdown("- [Florence 2 Whitepaper](https://arxiv.org/pdf/2311.06242) - how I found out about the Roboflow 100 and the BCCD dataset. Turns out this nugget was from the original [Florence whitepaper](https://arxiv.org/pdf/2111.11432) but useful all the same!")
gr.Markdown("- [Roboflow YouTube Video on Florence 2 fine-tuning](https://youtu.be/i3KjYgxNH6w?si=x1ZMg9hsNe25Y19-&t=1296) - bookmarked an 🧠insightful trade-off analysis of various VLMs.")
gr.Markdown("- [Landing AI - Vision Agent](https://va.landing.ai/) - 🌟just pure WOW. bringing agentic planning into solutions architecture.")
gr.Markdown("- [OmniScience fork of Landing AI repo](https://huggingface.co/spaces/dwb2023/omniscience) - I had a lot of fun with this one... some great 🔍reverse engineering enabled by W&B's Weave📊.")
gr.Markdown("- [Scooby Snacks🐕 - microservice based function calling with style](https://huggingface.co/spaces/dwb2023/blackbird-app) - Leveraging 🤖Claude Sonnet 3.5 to orchestrate Microservice-Based Function Calling.")
demo.launch(debug=True) |