Spaces:
Runtime error
Runtime error
File size: 2,364 Bytes
50aa037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from classes.Perturber import Perturber
from classes.Renderer import Renderer
from classes.LegibilityPlot import LegibilityPlot
from transformers import TrOCRProcessor, AutoModel
# preprocessor provides image normalization and resizing
preprocessor = TrOCRProcessor.from_pretrained(
"microsoft/trocr-base-handwritten")
# load the model schema and pretrained weights
# (this may take some time to download)
model = AutoModel.from_pretrained("dvsth/LEGIT-TrOCR-MT", revision='main', trust_remote_code=True)
perturber = Perturber('trocr', 50)
renderer = Renderer('unifont.ttf')
plotter = LegibilityPlot()
def demo(word_to_perturb, k, n):
if ' ' in word_to_perturb:
return 'Please enter a single word.'
perturbations, metadatas, images, scores = [], [], [], []
for i in range(10):
perturbation, metadata = perturber.perturb_word(word_to_perturb, k, n)
inputimg = renderer.render_image(perturbation, word_to_perturb)
score = model(preprocessor(inputimg, return_tensors='pt').pixel_values).item()
metadata['score'] = score
outputimg = renderer.render_image(perturbation, '')
perturbations.append(perturbation)
images.append(outputimg)
metadatas.append(metadata)
scores.append(score)
# sort perturbations by score
perturbations = [perturbation for perturbation, score in sorted(zip(perturbations, scores), key=lambda x: x[1])]
scores = sorted(scores)
images = [image for image, score in sorted(zip(images, scores), key=lambda x: x[1])]
metadatas = [metadata for metadata, score in sorted(zip(metadatas, scores), key=lambda x: x[1])]
# return as a single string in the format
# perturbation1 (score1)
# perturbation2 (score2)
# ...
# perturbationN (scoreN)
# with all scores rounded to 2 decimal places
ret_str = ''
for i in range(len(perturbations)):
ret_str += f'{perturbations[i]} ({round(scores[i], 2)}) -- ' + ("legible" if scores[i] > 0 else "not legible") + '\n'
# plot the perturbations and scores
fig = plotter.plot(scores, perturbations)
return ret_str, fig
interface = gr.Interface(fn=demo, inputs=["text", gr.Slider(1, 50, 20, step=1), gr.Slider(0., 1., 0.5)], outputs=["text", "plot"], allow_flagging='never')
interface.launch(inbrowser=True) |