Spaces:
Running
on
A10G
Running
on
A10G
File size: 9,797 Bytes
61d0d14 92cf4eb 50911e6 92cf4eb 61d0d14 92cf4eb 61d0d14 92cf4eb 61d0d14 92cf4eb 61d0d14 92cf4eb 61d0d14 92cf4eb 61d0d14 92cf4eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import functools
import gradio as gr
import torch
from fabric.generator import AttentionBasedGenerator
#model_name = "dreamlike-art/dreamlike-photoreal-2.0"
model_name = ""
model_ckpt = "https://huggingface.co/Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors"
class GeneratorWrapper:
def __init__(self, model_name=None, model_ckpt=None):
self.model_name = model_name if model_name else None
self.model_ckpt = model_ckpt if model_ckpt else None
self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.reload()
def generate(self, *args, **kwargs):
if not hasattr(self, "generator"):
self.reload()
return self.generator.generate(*args, **kwargs)
def to(self, device):
return self.generator.to(device)
def reload(self):
if hasattr(self, "generator"):
del self.generator
if self.device == "cuda":
torch.cuda.empty_cache()
self.generator = AttentionBasedGenerator(
model_name=self.model_name,
model_ckpt=self.model_ckpt,
torch_dtype=self.dtype,
).to(self.device)
generator = GeneratorWrapper(model_name, model_ckpt)
css = """
.btn-green {
background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important;
border-color: #22c55e !important;
color: #166534 !important;
}
.btn-green:hover {
background-image: linear-gradient(to bottom right, #86efac, #86efac) !important;
}
.btn-red {
background: linear-gradient(to bottom right, #fda4af, #fb7185) !important;
border-color: #fb7185 !important;
color: #9f1239 !important;
}
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;}
/*****/
.dark .btn-green {
background-image: linear-gradient(to bottom right, #047857, #065f46) !important;
border-color: #047857 !important;
color: #ffffff !important;
}
.dark .btn-green:hover {
background-image: linear-gradient(to bottom right, #047857, #047857) !important;
}
.dark .btn-red {
background: linear-gradient(to bottom right, #be123c, #9f1239) !important;
border-color: #be123c !important;
color: #ffffff !important;
}
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;}
"""
def generate_fn(
feedback_enabled,
max_feedback_imgs,
prompt,
neg_prompt,
liked,
disliked,
denoising_steps,
guidance_scale,
feedback_start,
feedback_end,
min_weight,
max_weight,
neg_scale,
batch_size,
seed,
progress=gr.Progress(track_tqdm=True),
):
try:
if seed < 0:
seed = None
max_feedback_imgs = max(0, int(max_feedback_imgs))
total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0)
if not feedback_enabled:
liked = []
disliked = []
elif total_images > max_feedback_imgs:
if liked and disliked:
max_disliked = min(len(disliked), max_feedback_imgs // 2)
max_liked = min(len(liked), max_feedback_imgs - max_disliked)
if max_liked > len(liked):
max_disliked = max_feedback_imgs - max_liked
liked = liked[-max_liked:]
disliked = disliked[-max_disliked:]
elif liked:
liked = liked[-max_feedback_imgs:]
disliked = []
else:
liked = []
disliked = disliked[-max_feedback_imgs:]
# else: keep all feedback images
generate_kwargs = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"liked": liked,
"disliked": disliked,
"denoising_steps": denoising_steps,
"guidance_scale": guidance_scale,
"feedback_start": feedback_start,
"feedback_end": feedback_end,
"min_weight": min_weight,
"max_weight": max_weight,
"neg_scale": neg_scale,
"seed": seed,
"n_images": batch_size,
}
try:
images = generator.generate(**generate_kwargs)
except RuntimeError as err:
if 'out of memory' in str(err):
generator.reload()
raise
return [(img, f"Image {i+1}") for i, img in enumerate(images)], images
except Exception as err:
raise gr.Error(str(err))
def add_img_from_list(i, curr_imgs, all_imgs):
if all_imgs is None:
all_imgs = []
if i >= 0 and i < len(curr_imgs):
all_imgs.append(curr_imgs[i])
return all_imgs, all_imgs # return (gallery, state)
def add_img(img, all_imgs):
if all_imgs is None:
all_imgs = []
all_imgs.append(img)
return None, all_imgs, all_imgs
def remove_img_from_list(event: gr.SelectData, imgs):
if event.index >= 0 and event.index < len(imgs):
imgs.pop(event.index)
return imgs, imgs
with gr.Blocks(css=css) as demo:
liked_imgs = gr.State([])
disliked_imgs = gr.State([])
curr_imgs = gr.State([])
with gr.Row():
with gr.Column(scale=100):
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality")
submit_btn = gr.Button("Generate", variant="primary", min_width="96px")
with gr.Row(equal_height=False):
with gr.Column():
denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps")
guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale")
batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False)
seed = gr.Number(-1, minimum=-1, precision=0, label="Seed")
max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)")
feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True)
with gr.Accordion("Liked Images", open=True):
liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image")
like_gallery = gr.Gallery(label="π Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
clear_liked_btn = gr.Button("Clear likes")
with gr.Accordion("Disliked Images", open=True):
disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image")
dislike_gallery = gr.Gallery(label="π Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False)
clear_disliked_btn = gr.Button("Clear dislikes")
with gr.Accordion("Feedback parameters", open=False):
feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.")
feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.")
feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)")
feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)")
feedback_neg_scale = gr.Slider(0.0, 1.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)")
with gr.Column():
gallery = gr.Gallery(label="Generated images")
like_btns = []
dislike_btns = []
with gr.Row():
for i in range(0, 2):
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
like_btns.append(like_btn)
with gr.Row():
for i in range(2, 4):
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green")
like_btns.append(like_btn)
with gr.Row():
for i in range(0, 2):
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
dislike_btns.append(dislike_btn)
with gr.Row():
for i in range(2, 4):
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red")
dislike_btns.append(dislike_btn)
generate_params = [
feedback_enabled,
max_feedback_imgs,
prompt,
neg_prompt,
liked_imgs,
disliked_imgs,
denoising_steps,
guidance_scale,
feedback_start,
feedback_end,
feedback_min_weight,
feedback_max_weight,
feedback_neg_scale,
batch_size,
seed,
]
submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs], queue=True)
for i, like_btn in enumerate(like_btns):
like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False)
for i, dislike_btn in enumerate(dislike_btns):
dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False)
dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False)
liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False)
disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False)
clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False)
clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False)
demo.queue(1)
demo.launch(debug=True) |