File size: 9,511 Bytes
168e76d 3c5d33d 168e76d f6825c2 168e76d 3c5d33d 168e76d 3c5d33d 168e76d 3c5d33d 168e76d 3c5d33d 168e76d f6825c2 168e76d f7f2122 168e76d f7f2122 168e76d f7f2122 168e76d f7f2122 168e76d f7f2122 168e76d f6825c2 168e76d facede3 168e76d 3d1e933 168e76d 3d1e933 168e76d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright 2023 Dmitry Ustalov
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__author__ = 'Dmitry Ustalov'
__license__ = 'Apache 2.0'
import csv
import os
import re
import subprocess
from dataclasses import dataclass
from tempfile import NamedTemporaryFile
from typing import Dict, IO, List, cast, Tuple, Optional, Any
import gradio as gr
import matplotlib.pyplot as plt
import networkx as nx
import pandas as pd
@dataclass
class Algorithm:
name: str
mode: Optional[str] = None
local_name: Optional[str] = None
local_params: Optional[str] = None
global_name: Optional[str] = None
global_params: Optional[str] = None
mcl_bin: Optional[str] = None
def args_clustering(self) -> List[str]:
args = [self.name]
if self.mode:
args.extend(['--mode', self.mode])
args.extend(self.args_graph())
if self.global_name:
args.extend(['--global', self.global_name])
if self.global_params:
args.extend(['--global-params', self.global_params])
if self.mcl_bin:
args.extend(['--mcl-bin', self.mcl_bin])
return args
def args_graph(self) -> List[str]:
args = []
if self.local_name:
args.extend(['--local', self.local_name])
if self.local_params:
args.extend(['--local-params', self.local_params])
return args
if 'MCL_BIN' in os.environ and os.path.isfile(os.environ['MCL_BIN']) and os.access(os.environ['MCL_BIN'], os.X_OK):
mcl: Optional[str] = os.environ['MCL_BIN']
else:
mcl = None
ALGORITHMS: Dict[str, Algorithm] = {
'Watset[CW_top, CW_top]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=top'),
'Watset[CW_lin, CW_top]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=top'),
'Watset[CW_log, CW_top]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=top'),
'Watset[MCL, CW_top]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=top'),
'Watset[CW_top, CW_lin]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=lin'),
'Watset[CW_lin, CW_lin]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=lin'),
'Watset[CW_log, CW_lin]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=lin'),
'Watset[MCL, CW_lin]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=lin'),
'Watset[CW_top, CW_log]': Algorithm('watset', None, 'cw', 'mode=top', 'cw', 'mode=log'),
'Watset[CW_lin, CW_log]': Algorithm('watset', None, 'cw', 'mode=lin', 'cw', 'mode=log'),
'Watset[CW_log, CW_log]': Algorithm('watset', None, 'cw', 'mode=log', 'cw', 'mode=log'),
'Watset[MCL, CW_log]': Algorithm('watset', None, 'mcl', None, 'cw', 'mode=log'),
'CW_top': Algorithm('cw', 'top'),
'CW_lin': Algorithm('cw', 'lin'),
'CW_log': Algorithm('cw', 'log'),
'MaxMax': Algorithm('maxmax')
}
if mcl:
ALGORITHMS.update({
'Watset[CW_top, MCL]': Algorithm('watset', None, 'cw', 'mode=top', 'mcl', 'mcl-bin=' + mcl),
'Watset[CW_lin, MCL]': Algorithm('watset', None, 'cw', 'mode=lin', 'mcl', 'mcl-bin=' + mcl),
'Watset[CW_log, MCL]': Algorithm('watset', None, 'cw', 'mode=log', 'mcl', 'mcl-bin=' + mcl),
'Watset[MCL, MCL]': Algorithm('watset', None, 'mcl', None, 'mcl', 'mcl-bin=' + mcl),
'MCL': Algorithm('mcl')
})
SENSE = re.compile(r'^(?P<item>\d+)#(?P<sense>\d+)$')
def visualize(G: nx.Graph, seed: int = 0) -> plt.Figure:
pos = nx.spring_layout(G, seed=seed)
fig = plt.figure(dpi=240)
plt.axis('off')
nx.draw_networkx_edges(G, pos, alpha=.15)
nx.draw_networkx_labels(G, pos)
return fig
# noinspection PyPep8Naming
def watset(G: nx.Graph, algorithm: str, seed: int = 0,
jar: str = 'watset.jar', timeout: int = 10) -> Tuple[pd.DataFrame, Optional[nx.Graph]]:
with (NamedTemporaryFile() as graph,
NamedTemporaryFile(mode='rb') as clusters,
NamedTemporaryFile(mode='rb') as senses):
nx.write_edgelist(G, graph.name, delimiter='\t', data=['weight'])
try:
result = subprocess.run(['java', '-jar', jar,
'--input', graph.name, '--output', clusters.name, '--seed', str(seed),
*ALGORITHMS[algorithm].args_clustering()],
capture_output=True, text=True, timeout=timeout)
if result.returncode != 0:
raise gr.Error(f'Clustering error (code {result.returncode}): {result.stderr}')
except subprocess.SubprocessError as e:
raise gr.Error(f'Clustering error: {e}')
df_clusters = pd.read_csv(clusters, sep='\t', names=('cluster', 'size', 'items'),
dtype={'cluster': int, 'size': int, 'items': str})
df_clusters['items'] = df_clusters['items'].str.split(', ')
if ALGORITHMS[algorithm].name == 'watset':
try:
result = subprocess.run(['java', '-jar', jar,
'--input', graph.name, '--output', senses.name, '--seed', str(seed),
'graph', *ALGORITHMS[algorithm].args_graph()],
capture_output=True, text=True, timeout=timeout)
if result.returncode != 0:
raise gr.Error(f'Graph error (code {result.returncode}): {result.stderr}')
except subprocess.SubprocessError as e:
raise gr.Error(f'Graph error: {e}')
G_senses = nx.read_edgelist(senses.name, delimiter='\t', comments='\n', data=[('weight', float)])
return df_clusters, G_senses
return df_clusters, None
def handler(file: IO[bytes], algorithm: str, seed: int) -> Tuple[pd.DataFrame, plt.Figure]:
if file is None:
raise gr.Error('File must be uploaded')
if algorithm not in ALGORITHMS:
raise gr.Error(f'Unknown algorithm: {algorithm}')
with open(file.name) as f:
try:
dialect = csv.Sniffer().sniff(f.read(4096))
delimiter = dialect.delimiter
except csv.Error:
delimiter = ','
G: nx.Graph = nx.read_edgelist(file.name, delimiter=delimiter, comments='\n', data=[('weight', float)])
mapping: Dict[Any, int] = {}
reverse: Dict[int, Any] = {}
for i, node in enumerate(G):
mapping[node] = i
reverse[i] = node
nx.relabel_nodes(G, mapping, copy=False)
df_clusters, G_senses = watset(G, algorithm=algorithm, seed=seed)
nx.relabel_nodes(G, reverse, copy=False)
df_clusters['items'] = df_clusters['items'].apply(lambda items: sorted(reverse[int(item)] for item in items))
if G_senses is None:
fig = visualize(G, seed=seed)
else:
sense_mapping = {node: f'{reverse[int(match["item"])]}#{match["sense"]}' # type: ignore
for node in G_senses for match in (SENSE.match(node),)}
nx.relabel_nodes(G_senses, sense_mapping, copy=False)
fig = visualize(G_senses, seed=seed)
return df_clusters, fig
def main() -> None:
iface = gr.Interface(
fn=handler,
inputs=[
gr.File(
file_types=['.tsv', '.csv'],
label='Graph'
),
gr.Dropdown(
choices=cast(List[str], ALGORITHMS),
value='Watset[MCL, CW_lin]',
label='Algorithm'
),
gr.Number(
label='Seed',
precision=0
)
],
outputs=[
gr.Dataframe(
headers=['cluster', 'size', 'items'],
label='Clustering'
),
gr.Plot(
label='Graph'
)
],
examples=[
['java.tsv', 'Watset[MCL, CW_lin]', 0],
['java.tsv', 'MaxMax', 0]
],
title='Structure Discovery with Watset',
description='''
**Watset** is a powerful algorithm for structure discovery in undirected graphs.
By capturing the ambiguity of nodes in a graph, Watset efficiently finds clusters in the input data.
As the input, this tool expects [edge list](https://en.wikipedia.org/wiki/Edge_list) as a comma-separated (CSV) file without header.
Each line of the file should contain three columns:
- `source`: edge source
- `target`: edge target
- `weight`: edge weight
Whether you're working with linguistic data or other networks, Watset is the go-to solution for unlocking hidden patterns and structures.
''',
article='''
**More Watset:**
- Paper: <https://doi.org/10.1162/COLI_a_00354> ([arXiv](https://arxiv.org/abs/1808.06696))
- Implementation: <https://github.com/nlpub/watset-java>
- Maven Central: <https://search.maven.org/artifact/org.nlpub/watset>
- conda-forge: <https://anaconda.org/conda-forge/watset>
''',
allow_flagging='never'
)
iface.launch()
if __name__ == '__main__':
main()
|