File size: 37,439 Bytes
81bd15c 3e69253 81bd15c 96c7fb7 75a802d 688e85a 74dd986 ff20737 74dd986 81bd15c 9381de4 84dd386 81bd15c c3029a6 aebf4d2 81bd15c f8b8c3b 81bd15c f8b8c3b 81bd15c f8b8c3b 81bd15c 7813cdf 96c7fb7 7813cdf 8fb74d6 7813cdf 66c976a 81bd15c 2012398 81bd15c 320e40a 81bd15c 56f2c0e 2012398 320e40a 81bd15c 66c976a 81bd15c 2012398 81bd15c 2012398 81bd15c 83a80d8 e887663 22d45a3 83a80d8 4fe413f 83a80d8 32468cd da86870 7c4ec71 da86870 3142592 da86870 3142592 da86870 3142592 da86870 3142592 da86870 3142592 da86870 3142592 da86870 3142592 da86870 3142592 da86870 ba43c72 da86870 3142592 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 da86870 ba43c72 7c4ec71 ba43c72 bb54994 7c4ec71 3142592 83a80d8 4fe413f 2012398 3142592 81bd15c 79919d7 3142592 d4b6d48 3142592 79919d7 83a80d8 22d45a3 706e01a 81bd15c d459b6a 81bd15c d459b6a 81bd15c e887663 81bd15c 93e1d77 2299926 0879b61 2299926 3142592 2299926 bb54994 2299926 7029aa9 2299926 81bd15c 2012398 a282bf5 83a80d8 81bd15c 563e3d9 81bd15c 83a80d8 81bd15c 83a80d8 81bd15c 5353cec 2012398 81bd15c 83a80d8 81bd15c 3142592 79919d7 3142592 7e93de4 81bd15c 15fc37d 706e01a 0879b61 81bd15c 427d179 3dd58cf 427d179 66c976a 3142592 81bd15c 15fc37d 81bd15c 427d179 79919d7 7029aa9 81bd15c 911fb02 7813cdf 15fc37d 7e93de4 15fc37d 320e40a 57363eb 427d179 79919d7 478d0c1 ba43c72 59dedb4 320e40a ea2ddb8 320e40a 7953a14 320e40a 79919d7 320e40a 427d179 320e40a 4f1d55c 2012398 320e40a 7c4ec71 320e40a 4b2a1af 320e40a 4fe413f 320e40a 4fe413f 320e40a 478d0c1 da86870 478d0c1 79919d7 478d0c1 d128830 478d0c1 da86870 478d0c1 da86870 478d0c1 79919d7 478d0c1 da86870 478d0c1 a14ce71 478d0c1 81bd15c 8fb74d6 320e40a 8fb74d6 7813cdf 8fb74d6 ef92c97 7813cdf 8fb74d6 83a80d8 8fb74d6 e887663 22d45a3 8fb74d6 4fe413f 8fb74d6 32468cd 7e93de4 8fb74d6 15fc37d 8fb74d6 320e40a 7813cdf 3142592 8fb74d6 7e93de4 8fb74d6 83a80d8 8fb74d6 911fb02 66c976a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
import os
import gradio as gr
from gradio_imageslider import ImageSlider
import argparse
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
import numpy as np
import torch
from SUPIR.util import create_SUPIR_model, load_QF_ckpt
from PIL import Image
from llava.llava_agent import LLavaAgent
from CKPT_PTH import LLAVA_MODEL_PATH
import einops
import copy
import math
import time
import random
import spaces
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)#False
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)#False
parser.add_argument("--use_tile_vae", action='store_true', default=True)#False
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()
use_llava = not args.no_llava
if torch.cuda.device_count() > 0:
if torch.cuda.device_count() >= 2:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:1'
elif torch.cuda.device_count() == 1:
SUPIR_device = 'cuda:0'
LLaVA_device = 'cuda:0'
else:
SUPIR_device = 'cpu'
LLaVA_device = 'cpu'
# load SUPIR
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
if args.loading_half_params:
model = model.half()
if args.use_tile_vae:
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
model = model.to(SUPIR_device)
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
model.current_model = 'v0-Q'
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
# load LLaVA
if use_llava:
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
else:
llava_agent = None
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, 2147483647)
return seed
def check(input_image):
if input_image is None:
raise gr.Error("Please provide an image to restore.")
def reset_feedback():
return 3, ''
@spaces.GPU(duration=540)
def stage1_process(input_image, gamma_correction):
print('stage1_process ==>>')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return None, None
torch.cuda.set_device(SUPIR_device)
LQ = HWC3(input_image)
LQ = fix_resize(LQ, 512)
# stage1
LQ = np.array(LQ) / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
LQ = model.batchify_denoise(LQ, is_stage1=True)
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
# gamma correction
LQ = LQ / 255.0
LQ = np.power(LQ, gamma_correction)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
print('<<== stage1_process')
return LQ, gr.update(visible = True)
@spaces.GPU(duration=540)
def llave_process(input_image, temperature, top_p, qs=None):
print('llave_process ==>>')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return 'Set this space to GPU config to make it work.'
torch.cuda.set_device(LLaVA_device)
if use_llava:
LQ = HWC3(input_image)
LQ = Image.fromarray(LQ.astype('uint8'))
captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
else:
captions = ['LLaVA is not available. Please add text manually.']
print('<<== llave_process')
return captions[0]
def stage2_process(
noisy_image,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
):
if allocation == 1:
return restore_in_1min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 2:
return restore_in_2min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 3:
return restore_in_3min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 4:
return restore_in_4min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 5:
return restore_in_5min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 7:
return restore_in_7min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 8:
return restore_in_8min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 9:
return restore_in_9min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
if allocation == 10:
return restore_in_10min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
else:
return restore_in_6min(
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
)
@spaces.GPU(duration=60)
def restore_in_1min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=120)
def restore_in_2min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=180)
def restore_in_3min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=240)
def restore_in_4min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=300)
def restore_in_5min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=360)
def restore_in_6min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=420)
def restore_in_7min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=480)
def restore_in_8min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=540)
def restore_in_9min(*args, **kwargs):
return restore(*args, **kwargs)
@spaces.GPU(duration=599)
def restore_in_10min(*args, **kwargs):
return restore(*args, **kwargs)
def restore(
noisy_image,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
):
start = time.time()
print('stage2_process ==>>')
print("noisy_image: " + str(noisy_image))
print("denoise_image: " + str(denoise_image))
print("prompt: " + str(prompt))
print("a_prompt: " + str(a_prompt))
print("n_prompt: " + str(n_prompt))
print("num_samples: " + str(num_samples))
print("min_size: " + str(min_size))
print("downscale: " + str(downscale))
print("upscale: " + str(upscale))
print("edm_steps: " + str(edm_steps))
print("s_stage1: " + str(s_stage1))
print("s_stage2: " + str(s_stage2))
print("s_cfg: " + str(s_cfg))
print("randomize_seed: " + str(randomize_seed))
print("seed: " + str(seed))
print("s_churn: " + str(s_churn))
print("s_noise: " + str(s_noise))
print("color_fix_type: " + str(color_fix_type))
print("diff_dtype: " + str(diff_dtype))
print("ae_dtype: " + str(ae_dtype))
print("gamma_correction: " + str(gamma_correction))
print("linear_CFG: " + str(linear_CFG))
print("linear_s_stage2: " + str(linear_s_stage2))
print("spt_linear_CFG: " + str(spt_linear_CFG))
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
print("model_select: " + str(model_select))
print("output_format: " + str(output_format))
print("GPU time allocation: " + str(allocation) + " min")
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return [noisy_image] * 2, [noisy_image] * 2, None, None
if output_format == "input":
if noisy_image is None:
output_format = "png"
else:
output_format = noisy_image.format
if prompt is None:
prompt = ""
if a_prompt is None:
a_prompt = ""
if n_prompt is None:
n_prompt = ""
if prompt != "" and a_prompt != "":
a_prompt = prompt + ", " + a_prompt
else:
a_prompt = prompt + a_prompt
print("Final prompt: " + str(a_prompt))
input_image = noisy_image if denoise_image is None else denoise_image
if 1 < downscale:
input_height, input_width, input_channel = np.array(input_image).shape
input_image = input_image.resize((input_width // downscale, input_height // downscale), Image.LANCZOS)
torch.cuda.set_device(SUPIR_device)
event_id = str(time.time_ns())
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
'model_select': model_select}
if model_select != model.current_model:
print('load ' + model_select)
if model_select == 'v0-Q':
model.load_state_dict(ckpt_Q, strict=False)
elif model_select == 'v0-F':
model.load_state_dict(ckpt_F, strict=False)
model.current_model = model_select
input_image = HWC3(input_image)
input_image = upscale_image(input_image, upscale, unit_resolution=32,
min_size=min_size)
LQ = np.array(input_image) / 255.0
LQ = np.power(LQ, gamma_correction)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
LQ = LQ / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
if use_llava:
captions = [prompt]
else:
captions = ['']
model.ae_dtype = convert_dtype(ae_dtype)
model.model.dtype = convert_dtype(diff_dtype)
samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
if args.log_history:
os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
f.write(str(event_dict))
f.close()
Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
for i, result in enumerate(results):
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
# All the results have the same size
result_height, result_width, result_channel = np.array(results[0]).shape
print('<<== stage2_process')
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
"Wait " + str(allocation) + " min before a new run to avoid time penalty. " + \
"The image(s) has(ve) been generated in " + \
((str(hours) + " h, ") if hours != 0 else "") + \
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
str(secondes) + " sec. " + \
"The new image resolution is " + str(result_width) + \
" pixels large and " + str(result_height) + \
" pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
print(information)
# Only one image can be shown in the slider
return [noisy_image] + [results[0]], gr.update(format = output_format, value = [noisy_image] + results), gr.update(value = information, visible = True), event_id
def load_and_reset(param_setting):
print('load_and_reset ==>>')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return None, None, None, None, None, None, None, None, None, None, None, None, None, None
edm_steps = default_setting.edm_steps
s_stage2 = 1.0
s_stage1 = -1.0
s_churn = 5
s_noise = 1.003
a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
'detailing, hyper sharpness, perfect without deformations.'
n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
'3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
'signature, jpeg artifacts, deformed, lowres, over-smooth'
color_fix_type = 'Wavelet'
spt_linear_s_stage2 = 0.0
linear_s_stage2 = False
linear_CFG = True
if param_setting == "Quality":
s_cfg = default_setting.s_cfg_Quality
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
model_select = "v0-Q"
elif param_setting == "Fidelity":
s_cfg = default_setting.s_cfg_Fidelity
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
model_select = "v0-F"
else:
raise NotImplementedError
gr.Info('The parameters are reset.')
print('<<== load_and_reset')
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
def log_information(result_gallery):
print('log_information')
if result_gallery is not None:
for i, result in enumerate(result_gallery):
print(result[0])
def on_select_result(result_gallery, evt: gr.SelectData):
print('on_select_result')
return [result_gallery[0][0], result_gallery[evt.index][0]]
def submit_feedback(event_id, fb_score, fb_text):
if args.log_history:
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
event_dict = eval(f.read())
f.close()
event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
f.write(str(event_dict))
f.close()
return 'Submit successfully, thank you for your comments!'
else:
return 'Submit failed, the server is not set to log history.'
title_html = """
<h1><center>SUPIR</center></h1>
<big><center>Upscale your images up to x8 freely, without account, without watermark and download it</center></big>
<center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
<p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
It is still a research project under tested and is not yet a stable commercial product.
The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
The aim of SUPIR is the beauty and the illustration.
Most of the processes only last few minutes.
This demo can handle huge images but the process will be aborted if it lasts more than 9 min.
Please leave a message in discussion if you encounter issues.
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png">How to play</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
"""
claim_md = """
## **Piracy**
The images are not stored but the logs are saved during a month.
## **How to get SUPIR**
You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
## **Terms of use**
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
## **License**
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
"""
# Gradio interface
with gr.Blocks(title="SUPIR") as interface:
if torch.cuda.device_count() == 0:
with gr.Row():
gr.HTML("""
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. This is a template space. Please provide feedback if you have issues.
</big></big></big></p>
""")
gr.HTML(title_html)
input_image = gr.Image(label="Input", show_label=True, type="numpy", height=600, elem_id="image-input")
with gr.Group():
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible; I advise you to write in English as other languages may not be handled", value="", placeholder="A person, walking, in a town, Summer, photorealistic", lines=3)
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True)
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8], ["9 min", 9], ["10 min (may fail)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Time penalty for next runs", value=6, interactive=True)
output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True)
with gr.Accordion("Pre-denoising (optional)", open=False):
gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
denoise_button = gr.Button(value="Pre-denoise")
denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", sources=[], height=600, elem_id="image-s1")
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
with gr.Accordion("LLaVA options", open=False, visible=False):
temperature = gr.Slider(label="Temperature", info = "lower=Always similar, higher=More creative", minimum=0., maximum=1.0, value=0.2, step=0.1)
top_p = gr.Slider(label="Top P", info = "Percent of tokens shortlisted", minimum=0., maximum=1.0, value=0.7, step=0.1)
qs = gr.Textbox(label="Question", info="Ask LLaVa what description you want", value="Describe the image and its style in a very detailed manner. The image is a realistic photography, not an art painting.", lines=3)
with gr.Accordion("Advanced options", open=False):
a_prompt = gr.Textbox(label="Additional image description",
info="Completes the main image description",
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
'hyper sharpness, perfect without deformations.',
lines=3)
n_prompt = gr.Textbox(label="Anti image description",
info="Disambiguate by listing what the image does NOT represent",
value='painting, oil painting, illustration, drawing, art, sketch, anime, '
'cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, '
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
'deformed, lowres, over-smooth',
lines=3)
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
, value=1, step=1)
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
with gr.Row():
with gr.Column():
model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
interactive=True)
with gr.Column():
color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet",
interactive=True)
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
with gr.Row():
with gr.Column():
linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
with gr.Column():
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
maximum=1., value=0., step=0.05)
with gr.Column():
diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
interactive=True)
with gr.Column():
ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
interactive=True)
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
with gr.Group():
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
restart_button = gr.Button(value="Apply presetting")
with gr.Group():
llave_button = gr.Button(value="Generate description by LlaVa (disabled)", visible=False)
diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id="process_button")
restore_information = gr.HTML(value="Restart the process to get another result.", visible=False)
result_slider = ImageSlider(label='Output', show_label=True, elem_id="slider1")
result_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery1")
with gr.Accordion("Feedback", open=True, visible=False):
fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1, interactive=True)
fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
submit_button = gr.Button(value="Submit Feedback")
event_id = gr.Textbox(label="Event ID", value="", visible=False)
gr.Examples(
fn = stage2_process,
inputs = [
input_image,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
],
outputs = [
result_slider,
result_gallery,
restore_information,
event_id
],
examples = [
[
"./Examples/Example1.png",
None,
"Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
1,
1024,
1,
8,
200,
-1,
1,
7.5,
False,
42,
5,
1.003,
"AdaIn",
"fp16",
"bf16",
1.0,
True,
4,
False,
0.,
"v0-Q",
"png",
6
],
[
"./Examples/Example2.jpeg",
None,
"The head of a tabby cat, in a house, photorealistic, 8k, extremely detailled",
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
1,
1024,
1,
1,
200,
-1,
1,
7.5,
False,
42,
5,
1.003,
"Wavelet",
"fp16",
"bf16",
1.0,
True,
4,
False,
0.,
"v0-Q",
"png",
6
],
],
cache_examples = False,
)
with gr.Row():
gr.Markdown(claim_md)
denoise_button.click(fn = check, inputs = [
input_image
], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
input_image,
gamma_correction
], outputs=[
denoise_image,
denoise_information
])
llave_button.click(fn = check, inputs = [
denoise_image
], outputs = [], queue = False, show_progress = False).success(fn = llave_process, inputs = [
denoise_image,
temperature,
top_p,
qs
], outputs = [
prompt
])
diffusion_button.click(fn = update_seed, inputs = [
randomize_seed,
seed
], outputs = [
seed
], queue = False, show_progress = False).then(fn = check, inputs = [
input_image
], outputs = [], queue = False, show_progress = False).success(fn = reset_feedback, inputs = [], outputs = [
fb_score,
fb_text
], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
input_image,
denoise_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
randomize_seed,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
output_format,
allocation
], outputs = [
result_slider,
result_gallery,
restore_information,
event_id
]).success(fn = log_information, inputs = [
result_gallery
], outputs = [], queue = False, show_progress = False)
result_gallery.select(on_select_result, result_gallery, result_slider)
restart_button.click(fn = load_and_reset, inputs = [
param_setting
], outputs = [
edm_steps,
s_cfg,
s_stage2,
s_stage1,
s_churn,
s_noise,
a_prompt,
n_prompt,
color_fix_type,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select
])
submit_button.click(fn = submit_feedback, inputs = [
event_id,
fb_score,
fb_text
], outputs = [
fb_text
])
interface.queue(10).launch() |