Spaces:
Runtime error
Runtime error
File size: 13,736 Bytes
e394497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# predict.py
import subprocess
import time
from cog import BasePredictor, Input, Path
import os
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from datetime import datetime
from torchvision.transforms.functional import pil_to_tensor, resize, center_crop
from constants import ASPECT_RATIO
MODEL_CACHE = "models"
os.environ["HF_DATASETS_OFFLINE"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
os.environ["HF_HOME"] = MODEL_CACHE
os.environ["TORCH_HOME"] = MODEL_CACHE
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
BASE_URL = f"https://weights.replicate.delivery/default/MimicMotion/{MODEL_CACHE}/"
def download_weights(url: str, dest: str) -> None:
# NOTE WHEN YOU EXTRACT SPECIFY THE PARENT FOLDER
start = time.time()
print("[!] Initiating download from URL: ", url)
print("[~] Destination path: ", dest)
if ".tar" in dest:
dest = os.path.dirname(dest)
command = ["pget", "-vf" + ("x" if ".tar" in url else ""), url, dest]
try:
print(f"[~] Running command: {' '.join(command)}")
subprocess.check_call(command, close_fds=False)
except subprocess.CalledProcessError as e:
print(
f"[ERROR] Failed to download weights. Command '{' '.join(e.cmd)}' returned non-zero exit status {e.returncode}."
)
raise
print("[+] Download completed in: ", time.time() - start, "seconds")
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
if not os.path.exists(MODEL_CACHE):
os.makedirs(MODEL_CACHE)
model_files = [
"DWPose.tar",
"MimicMotion.pth",
"MimicMotion_1-1.pth",
"SVD.tar",
]
for model_file in model_files:
url = BASE_URL + model_file
filename = url.split("/")[-1]
dest_path = os.path.join(MODEL_CACHE, filename)
if not os.path.exists(dest_path.replace(".tar", "")):
download_weights(url, dest_path)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
# Move imports here and make them global
# This ensures model files are downloaded before importing mimicmotion modules
global MimicMotionPipeline, create_pipeline, save_to_mp4, get_video_pose, get_image_pose
from mimicmotion.pipelines.pipeline_mimicmotion import MimicMotionPipeline
from mimicmotion.utils.loader import create_pipeline
from mimicmotion.utils.utils import save_to_mp4
from mimicmotion.dwpose.preprocess import get_video_pose, get_image_pose
# Load config with new checkpoint as default
self.config = OmegaConf.create(
{
"base_model_path": "models/SVD/stable-video-diffusion-img2vid-xt-1-1",
"ckpt_path": "models/MimicMotion_1-1.pth",
}
)
# Create the pipeline with the new checkpoint
self.pipeline = create_pipeline(self.config, self.device)
self.current_checkpoint = "v1-1"
self.current_dtype = torch.get_default_dtype()
def predict(
self,
motion_video: Path = Input(
description="Reference video file containing the motion to be mimicked"
),
appearance_image: Path = Input(
description="Reference image file for the appearance of the generated video"
),
resolution: int = Input(
description="Height of the output video in pixels. Width is automatically calculated.",
default=576,
ge=64,
le=1024,
),
chunk_size: int = Input(
description="Number of frames to generate in each processing chunk",
default=16,
ge=2,
),
frames_overlap: int = Input(
description="Number of overlapping frames between chunks for smoother transitions",
default=6,
ge=0,
),
denoising_steps: int = Input(
description="Number of denoising steps in the diffusion process. More steps can improve quality but increase processing time.",
default=25,
ge=1,
le=100,
),
noise_strength: float = Input(
description="Strength of noise augmentation. Higher values add more variation but may reduce coherence with the reference.",
default=0.0,
ge=0.0,
le=1.0,
),
guidance_scale: float = Input(
description="Strength of guidance towards the reference. Higher values adhere more closely to the reference but may reduce creativity.",
default=2.0,
ge=0.1,
le=10.0,
),
sample_stride: int = Input(
description="Interval for sampling frames from the reference video. Higher values skip more frames.",
default=2,
ge=1,
),
output_frames_per_second: int = Input(
description="Frames per second of the output video. Affects playback speed.",
default=15,
ge=1,
le=60,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed",
default=None,
),
checkpoint_version: str = Input(
description="Choose the checkpoint version to use",
choices=["v1", "v1-1"],
default="v1-1",
),
) -> Path:
"""Run a single prediction on the model"""
ref_video = motion_video
ref_image = appearance_image
num_frames = chunk_size
num_inference_steps = denoising_steps
noise_aug_strength = noise_strength
fps = output_frames_per_second
use_fp16 = True
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
need_pipeline_update = False
# Check if we need to switch checkpoints
if checkpoint_version != self.current_checkpoint:
if checkpoint_version == "v1":
self.config.ckpt_path = "models/MimicMotion.pth"
else: # v1-1
self.config.ckpt_path = "models/MimicMotion_1-1.pth"
need_pipeline_update = True
self.current_checkpoint = checkpoint_version
# Check if we need to switch dtype
target_dtype = torch.float16 if use_fp16 else torch.float32
if target_dtype != self.current_dtype:
torch.set_default_dtype(target_dtype)
need_pipeline_update = True
self.current_dtype = target_dtype
# Update pipeline if needed
if need_pipeline_update:
print(
f"Updating pipeline with checkpoint: {self.config.ckpt_path} and dtype: {torch.get_default_dtype()}"
)
self.pipeline = create_pipeline(self.config, self.device)
print(f"Using checkpoint: {self.config.ckpt_path}")
print(f"Using dtype: {torch.get_default_dtype()}")
print(
f"[!] ({type(ref_video)}) ref_video={ref_video}, "
f"[!] ({type(ref_image)}) ref_image={ref_image}, "
f"[!] ({type(resolution)}) resolution={resolution}, "
f"[!] ({type(num_frames)}) num_frames={num_frames}, "
f"[!] ({type(frames_overlap)}) frames_overlap={frames_overlap}, "
f"[!] ({type(num_inference_steps)}) num_inference_steps={num_inference_steps}, "
f"[!] ({type(noise_aug_strength)}) noise_aug_strength={noise_aug_strength}, "
f"[!] ({type(guidance_scale)}) guidance_scale={guidance_scale}, "
f"[!] ({type(sample_stride)}) sample_stride={sample_stride}, "
f"[!] ({type(fps)}) fps={fps}, "
f"[!] ({type(seed)}) seed={seed}, "
f"[!] ({type(use_fp16)}) use_fp16={use_fp16}"
)
# Input validation
if not ref_video.exists():
raise ValueError(f"Reference video file does not exist: {ref_video}")
if not ref_image.exists():
raise ValueError(f"Reference image file does not exist: {ref_image}")
if resolution % 8 != 0:
raise ValueError(f"Resolution must be a multiple of 8, got {resolution}")
if resolution < 64 or resolution > 1024:
raise ValueError(
f"Resolution must be between 64 and 1024, got {resolution}"
)
if num_frames <= frames_overlap:
raise ValueError(
f"Number of frames ({num_frames}) must be greater than frames overlap ({frames_overlap})"
)
if num_frames < 2:
raise ValueError(f"Number of frames must be at least 2, got {num_frames}")
if frames_overlap < 0:
raise ValueError(
f"Frames overlap must be non-negative, got {frames_overlap}"
)
if num_inference_steps < 1 or num_inference_steps > 100:
raise ValueError(
f"Number of inference steps must be between 1 and 100, got {num_inference_steps}"
)
if noise_aug_strength < 0.0 or noise_aug_strength > 1.0:
raise ValueError(
f"Noise augmentation strength must be between 0.0 and 1.0, got {noise_aug_strength}"
)
if guidance_scale < 0.1 or guidance_scale > 10.0:
raise ValueError(
f"Guidance scale must be between 0.1 and 10.0, got {guidance_scale}"
)
if sample_stride < 1:
raise ValueError(f"Sample stride must be at least 1, got {sample_stride}")
if fps < 1 or fps > 60:
raise ValueError(f"FPS must be between 1 and 60, got {fps}")
try:
# Preprocess
pose_pixels, image_pixels = self.preprocess(
str(ref_video),
str(ref_image),
resolution=resolution,
sample_stride=sample_stride,
)
# Run pipeline
video_frames = self.run_pipeline(
image_pixels,
pose_pixels,
num_frames=num_frames,
frames_overlap=frames_overlap,
num_inference_steps=num_inference_steps,
noise_aug_strength=noise_aug_strength,
guidance_scale=guidance_scale,
seed=seed,
)
# Save output
output_path = f"/tmp/output_{datetime.now().strftime('%Y%m%d%H%M%S')}.mp4"
save_to_mp4(video_frames, output_path, fps=fps)
return Path(output_path)
except Exception as e:
print(f"An error occurred during prediction: {str(e)}")
raise
def preprocess(self, video_path, image_path, resolution=576, sample_stride=2):
image_pixels = Image.open(image_path).convert("RGB")
image_pixels = pil_to_tensor(image_pixels) # (c, h, w)
h, w = image_pixels.shape[-2:]
if h > w:
w_target, h_target = resolution, int(resolution / ASPECT_RATIO // 64) * 64
else:
w_target, h_target = int(resolution / ASPECT_RATIO // 64) * 64, resolution
h_w_ratio = float(h) / float(w)
if h_w_ratio < h_target / w_target:
h_resize, w_resize = h_target, int(h_target / h_w_ratio)
else:
h_resize, w_resize = int(w_target * h_w_ratio), w_target
image_pixels = resize(image_pixels, [h_resize, w_resize], antialias=None)
image_pixels = center_crop(image_pixels, [h_target, w_target])
image_pixels = image_pixels.permute((1, 2, 0)).numpy()
image_pose = get_image_pose(image_pixels)
video_pose = get_video_pose(
video_path, image_pixels, sample_stride=sample_stride
)
pose_pixels = np.concatenate([np.expand_dims(image_pose, 0), video_pose])
image_pixels = np.transpose(np.expand_dims(image_pixels, 0), (0, 3, 1, 2))
return (
torch.from_numpy(pose_pixels.copy()) / 127.5 - 1,
torch.from_numpy(image_pixels) / 127.5 - 1,
)
def run_pipeline(
self,
image_pixels,
pose_pixels,
num_frames,
frames_overlap,
num_inference_steps,
noise_aug_strength,
guidance_scale,
seed,
):
image_pixels = [
Image.fromarray(
(img.cpu().numpy().transpose(1, 2, 0) * 127.5 + 127.5).astype(np.uint8)
)
for img in image_pixels
]
pose_pixels = pose_pixels.unsqueeze(0).to(self.device)
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
frames = self.pipeline(
image_pixels,
image_pose=pose_pixels,
num_frames=pose_pixels.size(1),
tile_size=num_frames,
tile_overlap=frames_overlap,
height=pose_pixels.shape[-2],
width=pose_pixels.shape[-1],
fps=7,
noise_aug_strength=noise_aug_strength,
num_inference_steps=num_inference_steps,
generator=generator,
min_guidance_scale=guidance_scale,
max_guidance_scale=guidance_scale,
decode_chunk_size=8,
output_type="pt",
device=self.device,
).frames.cpu()
video_frames = (frames * 255.0).to(torch.uint8)
return video_frames[0, 1:] # Remove the first frame (reference image)
|