Spaces:
Runtime error
Runtime error
File size: 15,178 Bytes
4913d8e b3b6e78 4913d8e ec4ad71 2a29001 22fa11a ec4ad71 ee88ea4 a0726b3 28e784b 63dba30 28e784b c113e29 ee88ea4 9a876dd ee88ea4 14563b1 4913d8e fc6dfba 4913d8e 2a29001 4913d8e 2a29001 4913d8e 2a29001 4913d8e b3b6e78 4913d8e b3b6e78 4913d8e 2a29001 649f5e6 b7880b4 649f5e6 d6761cb b3b6e78 ec4ad71 2a29001 ec4ad71 d6761cb ec4ad71 d6761cb ec4ad71 d6761cb ec4ad71 d6761cb ec4ad71 3de8992 de0d30c ec4ad71 de0d30c 9a876dd 7ea551a de0d30c 9a876dd de0d30c b3b6e78 de0d30c b3b6e78 ec4ad71 b3b6e78 4913d8e 28e784b 3cd50f0 28e784b 48daa96 28e784b c113e29 28e784b 9a876dd 28e784b d6761cb 9a876dd 28e784b 48daa96 28e784b d6761cb 28e784b d6761cb fe70a88 d6761cb fe70a88 649f5e6 63dba30 649f5e6 b7880b4 649f5e6 3cd50f0 9a876dd 63dba30 9a876dd 4913d8e 649f5e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import gradio as gr
import os
import shutil
import yaml
import tempfile
import cv2
import huggingface_hub
import subprocess
import threading
import torch
from subprocess import getoutput
is_shared_ui = False
# is_shared_ui = True if "fffiloni/MimicMotion" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
is_gpu_associated = torch.cuda.is_available()
if is_gpu_associated:
gpu_info = getoutput('nvidia-smi')
if("A10G" in gpu_info):
which_gpu = "A10G"
elif("T4" in gpu_info):
which_gpu = "T4"
else:
which_gpu = "CPU"
def stream_output(pipe):
for line in iter(pipe.readline, ''):
print(line, end='')
pipe.close()
HF_TKN = os.environ.get("GATED_HF_TOKEN")
huggingface_hub.login(token=HF_TKN)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='yolox_l.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='dw-ll_ucoco_384.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='ixaac/MimicMotion',
filename='MimicMotion_1.pth',
local_dir='./models'
)
def print_directory_contents(path):
for root, dirs, files in os.walk(path):
level = root.replace(path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
def check_outputs_folder(folder_path):
# Check if the folder exists
if os.path.exists(folder_path) and os.path.isdir(folder_path):
# Delete all contents inside the folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
print(f'The folder {folder_path} does not exist.')
def check_for_mp4_in_outputs():
# Define the path to the outputs folder
outputs_folder = './outputs'
# Check if the outputs folder exists
if not os.path.exists(outputs_folder):
return None
# Check if there is a .mp4 file in the outputs folder
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
# Return the path to the mp4 file if it exists
if mp4_files:
return os.path.join(outputs_folder, mp4_files[0])
else:
return None
def get_video_fps(video_path):
# Open the video file
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError("Error opening video file")
# Get the FPS value
fps = video_capture.get(cv2.CAP_PROP_FPS)
# Release the video capture object
video_capture.release()
return fps
def load_examples(ref_image_in, ref_video_in):
return "./examples/mimicmotion_result1_example.mp4"
def infer(ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version):
# check if 'outputs' dir exists and empty it if necessary
check_outputs_folder('./outputs')
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
print("Temporary directory created:", temp_dir)
# Define the values for the variables
ref_video_path = ref_video_in
ref_image_path = ref_image_in
num_frames = 16
resolution = 576
frames_overlap = 6
num_inference_steps = num_inference_steps # 25
noise_aug_strength = 0
guidance_scale = guidance_scale # 2.0
sample_stride = 2
fps = output_frames_per_second # 16
seed = seed # 42
# Create the data structure
data = {
'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1',
'ckpt_path': f'models/{checkpoint_version}',
'test_case': [
{
'ref_video_path': ref_video_path,
'ref_image_path': ref_image_path,
'num_frames': num_frames,
'resolution': resolution,
'frames_overlap': frames_overlap,
'num_inference_steps': num_inference_steps,
'noise_aug_strength': noise_aug_strength,
'guidance_scale': guidance_scale,
'sample_stride': sample_stride,
'fps': fps,
'seed': seed
}
]
}
# Define the file path
file_path = os.path.join(temp_dir, 'config.yaml')
# Write the data to a YAML file
with open(file_path, 'w') as file:
yaml.dump(data, file, default_flow_style=False)
print("YAML file 'config.yaml' created successfully in", file_path)
# Execute the inference command
command = ['python', 'inference.py', '--inference_config', file_path]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
# Create threads to handle stdout and stderr
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,))
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,))
# Start the threads
stdout_thread.start()
stderr_thread.start()
# Wait for the process to complete and the threads to finish
process.wait()
stdout_thread.join()
stderr_thread.join()
print("Inference script finished with return code:", process.returncode)
# Print the outputs directory contents
print_directory_contents('./outputs')
# Call the function and print the result
mp4_file_path = check_for_mp4_in_outputs()
print(mp4_file_path)
return mp4_file_path
output_video = gr.Video(label="Output Video")
css = """
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
div#warning-setgpu {
background-color: #fff4eb;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
color: #91230f;
}
div#warning-setgpu p.actions > a {
display: inline-block;
background: #1f1f23;
border-radius: 40px;
padding: 6px 24px;
color: antiquewhite;
text-decoration: none;
font-weight: 600;
font-size: 1.2em;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
.custom-color {
color: #030303 !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# MimicMotion")
gr.Markdown("High-quality human motion video generation with pose-guided control")
with gr.Row():
with gr.Column():
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Attention: this Space need to be duplicated to work</h2>
<p class="main-message custom-color">
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (A10G-large recommended).<br />
A A10G-large costs <strong>US$1.50/h</strong>. You'll also need to set your own secret hf_token to access gated stabilityai/stable-video-diffusion-img2vid-xt-1-1 repo.
</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start experimenting with this demo
</p>
</div>
''', elem_id="warning-duplicate")
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully associated a {which_gpu} GPU to this Space 🎉</h2>
<p class="custom-color">
You will be billed by the minute from when you activated the GPU until when it is turned off.
</p>
</div>
''', elem_id="warning-ready")
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully duplicated the MimicMotion Space 🎉</h2>
<p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a GPU</b> to it (via the Settings tab)</a> and run the app below.
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
<p class="actions custom-color">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">🔥 Set recommended GPU</a>
</p>
</div>
''', elem_id="warning-setgpu")
with gr.Row():
ref_image_in = gr.Image(label="Person Image Reference", type="filepath")
ref_video_in = gr.Video(label="Person Video Reference")
with gr.Accordion("Advanced Settings", open=False):
num_inference_steps = gr.Slider(label="num inference steps", minimum=12, maximum=50, value=25, step=1, interactive=available_property)
guidance_scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=10, value=2, step=0.1, interactive=available_property)
with gr.Row():
output_frames_per_second = gr.Slider(label="fps", minimum=1, maximum=60, value=16, step=1, interactive=available_property)
seed = gr.Number(label="Seed", value=42, interactive=available_property)
checkpoint_version = gr.Dropdown(label="Checkpoint Version", choices=["MimicMotion_1.pth", "MimicMotion_1-1.pth"], value="MimicMotion_1.pth", interactive=available_property)
submit_btn = gr.Button("Submit", interactive=available_property)
gr.Examples(
examples = [
["./examples/demo1.jpg", "./examples/preview_1.mp4"]
],
fn = load_examples,
inputs = [ref_image_in, ref_video_in],
outputs = [output_video],
run_on_click = True,
cache_examples = False
)
output_video.render()
submit_btn.click(
fn = infer,
inputs = [ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version],
outputs = [output_video]
)
demo.launch(show_api=False, show_error=False) |