Spaces:
Sleeping
Sleeping
File size: 2,238 Bytes
fbde87b 4d0c7a4 fbde87b 4d0c7a4 fbde87b 4d0c7a4 fbde87b 4d0c7a4 fbde87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import xgboost as xgb
import pandas as pd
from datetime import datetime, timedelta
import os
# Extended dummy dataset
data = pd.DataFrame([
{"last_premium_paid_date": (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 15, "policy_age": 3, "risk": 1},
{"last_premium_paid_date": (datetime.now() - timedelta(days=10)).strftime('%Y-%m-%d'), "payment_mode": "Monthly", "policy_term": 20, "policy_age": 2, "risk": 0},
{"last_premium_paid_date": (datetime.now() - timedelta(days=400)).strftime('%Y-%m-%d'), "payment_mode": "Quarterly", "policy_term": 25, "policy_age": 5, "risk": 1},
{"last_premium_paid_date": (datetime.now() - timedelta(days=700)).strftime('%Y-%m-%d'), "payment_mode": "Semi-Annual", "policy_term": 10, "policy_age": 8, "risk": 1},
{"last_premium_paid_date": (datetime.now() - timedelta(days=90)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 12, "policy_age": 4, "risk": 0},
{"last_premium_paid_date": (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d'), "payment_mode": "Monthly", "policy_term": 20, "policy_age": 1, "risk": 0},
{"last_premium_paid_date": (datetime.now() - timedelta(days=300)).strftime('%Y-%m-%d'), "payment_mode": "Annual", "policy_term": 15, "policy_age": 3, "risk": 1},
{"last_premium_paid_date": (datetime.now() - timedelta(days=180)).strftime('%Y-%m-%d'), "payment_mode": "Quarterly", "policy_term": 18, "policy_age": 6, "risk": 0},
])
def encode_payment_mode(mode):
return {"Annual": 0, "Semi-Annual": 1, "Quarterly": 2, "Monthly": 3}.get(mode, -1)
def calculate_months_since(date_str):
try:
delta = datetime.now() - datetime.strptime(date_str, "%Y-%m-%d")
return delta.days // 30
except:
return 0
data["months_since_last_payment"] = data["last_premium_paid_date"].apply(calculate_months_since)
data["payment_mode_encoded"] = data["payment_mode"].apply(encode_payment_mode)
X = data[["months_since_last_payment", "payment_mode_encoded", "policy_term", "policy_age"]]
y = data["risk"]
model = xgb.XGBClassifier(use_label_encoder=False, eval_metric="logloss")
model.fit(X, y)
os.makedirs("model", exist_ok=True)
model.save_model("model/xgb_model.json")
|