File size: 6,135 Bytes
78f5ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# rag.py
import os
import json
import pickle
import logging
from typing import List, Tuple, Optional

import numpy as np
import faiss
from sentence_transformers import SentenceTransformer

from config import VECTORSTORE_DIR, EMBEDDING_MODEL

log = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


class RAGAgent:
    """

    Loads a FAISS index + metadata from VECTORSTORE_DIR (config).

    Provides retrieve(query, k) -> (contexts: List[str], sources: List[dict])

    """

    def __init__(self, vectorstore_dir: Optional[str] = None, embedding_model: Optional[str] = None):
        self.vectorstore_dir = vectorstore_dir or str(VECTORSTORE_DIR)
        self.embedding_model_name = embedding_model or EMBEDDING_MODEL
        self.index: Optional[faiss.Index] = None
        self.metadata: Optional[List[dict]] = None
        self._embedder: Optional[SentenceTransformer] = None
        self._loaded = False

    def _find_index_file(self) -> str:
        if not os.path.isdir(self.vectorstore_dir):
            raise FileNotFoundError(f"Vectorstore dir not found: {self.vectorstore_dir}")

        for fname in os.listdir(self.vectorstore_dir):
            if fname.endswith(".faiss") or fname.endswith(".index") or fname.endswith(".bin") or fname.startswith("index"):
                return os.path.join(self.vectorstore_dir, fname)

        raise FileNotFoundError(f"No FAISS index file (.faiss/.index/.bin) found in {self.vectorstore_dir}")

    def _find_meta_file(self) -> str:
        for candidate in ("index.pkl", "metadata.pkl", "index_meta.pkl", "metadata.json", "index.json"):
            p = os.path.join(self.vectorstore_dir, candidate)
            if os.path.exists(p):
                return p
        
        for fname in os.listdir(self.vectorstore_dir):
            if fname.endswith(".pkl"):
                return os.path.join(self.vectorstore_dir, fname)
        raise FileNotFoundError(f"No metadata (.pkl/.json) found in {self.vectorstore_dir}")

    @property
    def embedder(self) -> SentenceTransformer:
        if self._embedder is None:
            log.info("Loading embedder: %s", self.embedding_model_name)
            self._embedder = SentenceTransformer(self.embedding_model_name)
        return self._embedder

    def load(self) -> None:
        """Load index and metadata into memory (idempotent)."""
        if self._loaded:
            return
        idx_path = self._find_index_file()
        meta_path = self._find_meta_file()

        log.info("Loading FAISS index from: %s", idx_path)
        try:
            self.index = faiss.read_index(idx_path)
        except Exception as e:
            raise RuntimeError(f"Failed to read faiss index {idx_path}: {e}")

        log.info("Loading metadata from: %s", meta_path)
        if meta_path.endswith(".json"):
            with open(meta_path, "r", encoding="utf-8") as f:
                self.metadata = json.load(f)
        else:
            with open(meta_path, "rb") as f:
                self.metadata = pickle.load(f)

        if not isinstance(self.metadata, list):

            if isinstance(self.metadata, dict):
              
                keys = sorted(self.metadata.keys())
                try:
                    self.metadata = [self.metadata[k] for k in keys]
                except Exception:
                 
                    self.metadata = list(self.metadata.values())
            else:
                self.metadata = list(self.metadata)

        log.info("Loaded index and metadata: metadata length=%d", len(self.metadata))
        self._loaded = True

    def retrieve(self, query: str, k: int = 3) -> Tuple[List[str], List[dict]]:
        """

        Return two lists:

        - contexts: [str, ...] top-k chunk texts (may be fewer)

        - sources: [ {meta..., "score": float}, ... ]

        """
        if not self._loaded:
            self.load()

        if self.index is None or self.metadata is None:
            return [], []

       
        q_emb = self.embedder.encode([query], convert_to_numpy=True)
        # try normalize if index uses normalized vectors
        try:
            faiss.normalize_L2(q_emb)
        except Exception:
            pass
        q_emb = q_emb.astype("float32")

        # safe search call
        try:
            D, I = self.index.search(q_emb, k)
        except Exception as e:
            log.warning("FAISS search error: %s", e)
            return [], []

        # ensure shapes
        if I is None or D is None:
            return [], []

        
        indices = np.array(I).reshape(-1)[:k].tolist()
        scores = np.array(D).reshape(-1)[:k].tolist()

        contexts = []
        sources = []
        for idx, score in zip(indices, scores):
            if int(idx) < 0:
                continue
            # guard against idx out of metadata bounds
            if idx >= len(self.metadata):
                log.debug("Index %s >= metadata length %d — skipping", idx, len(self.metadata))
                continue
            meta = self.metadata[int(idx)]

            # extract text from common keys
            text = None
            for key in ("text", "page_content", "content", "chunk_text", "source_text"):
                if isinstance(meta, dict) and key in meta and meta[key]:
                    text = meta[key]
                    break
            if text is None:
                # fallbac if metadata itself is a string or has 'text' attribute
                if isinstance(meta, str):
                    text = meta
                elif isinstance(meta, dict) and "metadata" in meta and isinstance(meta["metadata"], dict):
                    # sometimes nested
                    text = meta["metadata"].get("text") or meta["metadata"].get("page_content")
                else:
                    text = str(meta)

            contexts.append(text)
            sources.append({"meta": meta, "score": float(score)})

        return contexts, sources