Spaces:
Sleeping
Sleeping
File size: 1,405 Bytes
06088b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.conv3 = nn.Conv2d(64, 128, 5)
self.conv4 = nn.Conv2d(128, 256, 5)
self.conv5 = nn.Conv2d(256, 512, 5)
self.fc1 = None
self.fc2 = nn.Linear(512, 128)
self.fc3 = nn.Linear(128, 64)
self.fc4 = nn.Linear(64, 2)
def forward(self, x):
x = x.float()
""" x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv5(x))
x = F.max_pool2d(x, 2) """
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = F.max_pool2d(F.relu(self.conv4(x)), 2)
x = F.max_pool2d(F.relu(self.conv5(x)), 2)
#x = x.view(x.size(0), -1)
x = torch.flatten(x, 1)
if self.fc1 is None:
self.fc1 = nn.Linear(x.shape[1], 512).to(x.device)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x |