File size: 11,971 Bytes
a61d226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import argparse
import numpy as np
import pyBigWig,os
from zipfile import ZipFile
import zipfile
import shutil
import torch
from pretrain.model import build_epd_model
from pretrain.track.model import build_track_model
from cage.model import build_cage_model
from cop.micro_model import build_microc_model
from cop.hic_model import build_hic_model
from einops import rearrange
import gradio




def parser_args():
    """
    Hyperparameters for the pre-training model
    """
    # add_help = False
    parser = argparse.ArgumentParser(add_help = False)
    parser.add_argument('--num_class', default=245, type=int,help='the number of epigenomic features to be predicted')
    parser.add_argument('--seq_length', default=1600, type=int,help='the length of input sequences')
    parser.add_argument('--nheads', default=4, type=int)
    parser.add_argument('--hidden_dim', default=512, type=int)
    parser.add_argument('--dim_feedforward', default=1024, type=int)
    parser.add_argument('--enc_layers', default=1, type=int)
    parser.add_argument('--dec_layers', default=2, type=int)
    parser.add_argument('--dropout', default=0.2, type=float)
    args, unknown = parser.parse_known_args()
    return args,parser
def get_args():
    args,_ = parser_args()
    return args,_

def parser_args_epi(parent_parser):
    """
    Hyperparameters for the downstream model to predict 1kb-resolution CAGE-seq
    """
    parser=argparse.ArgumentParser(parents=[parent_parser],add_help = False)
    parser.add_argument('--bins', type=int, default=500)
    parser.add_argument('--crop', type=int, default=10)
    parser.add_argument('--embed_dim', default=768, type=int)
    parser.add_argument('--return_embed', default=False, action='store_true')
    args, unknown = parser.parse_known_args()
    return args

def parser_args_cage(parent_parser):
    """
    Hyperparameters for the downstream model to predict 1kb-resolution CAGE-seq
    """
    parser=argparse.ArgumentParser(parents=[parent_parser],add_help = False)
    parser.add_argument('--bins', type=int, default=500)
    parser.add_argument('--crop', type=int, default=10)
    parser.add_argument('--embed_dim', default=768, type=int)
    parser.add_argument('--return_embed', default=True, action='store_false')
    args, unknown = parser.parse_known_args()
    return args

def parser_args_hic(parent_parser):
    """
    Hyperparameters for the downstream model to predict 5kb-resolution Hi-C and ChIA-PET
    """
    parser=argparse.ArgumentParser(parents=[parent_parser],add_help = False)
    parser.add_argument('--bins', type=int, default=200)
    parser.add_argument('--crop', type=int, default=4)
    parser.add_argument('--embed_dim', default=256, type=int)
    args, unknown = parser.parse_known_args()
    return args

def parser_args_microc(parent_parser):
    """
    Hyperparameters for the downstream model to predict 1kb-resolution Micro-C
    """
    parser=argparse.ArgumentParser(parents=[parent_parser],add_help = False)
    parser.add_argument('--bins', type=int, default=500)
    parser.add_argument('--crop', type=int, default=10)
    parser.add_argument('--embed_dim', default=768, type=int)
    parser.add_argument('--return_embed', default=True, action='store_false')
    args, unknown = parser.parse_known_args()
    return args




def check_region(chrom,start,end,ref_genome,region_len):
    start,end=int(start),int(end)
    if end-start != region_len:
        if region_len==500000:
            raise gradio.Error("Please enter a 500kb region!")
        else:
            raise gradio.Error("Please enter a 1Mb region!")
    if start<300 or end > ref_genome.shape[1]-300:
        raise gradio.Error("The start of input region should be greater than 300 and "
                         "the end of the region should be less than %s!"%(ref_genome.shape[1]-300))
    return int(chrom),start,end

def generate_input(start,end,ref_genome,atac_seq):
    # inputs=[]
    pad_left=np.expand_dims(np.vstack((ref_genome[:,start-300:start],atac_seq[:,start-300:start])),0)
    pad_right=np.expand_dims(np.vstack((ref_genome[:,end:end+300],atac_seq[:,end:end+300])),0)
    center=np.vstack((ref_genome[:,start:end],atac_seq[:,start:end]))
    center=rearrange(center,'n (b l)-> b n l',l=1000)
    dmatrix = np.concatenate((pad_left, center[:, :, -300:]), axis=0)[:-1, :, :]
    umatrix = np.concatenate((center[:, :, :300], pad_right), axis=0)[1:, :, :]
    return np.concatenate((dmatrix, center, umatrix), axis=2)


def search_tf(tf):
    with open('data/epigenomes.txt', 'r') as f:
        epigenomes = f.read().splitlines()
    tf_idx= epigenomes.index(tf)
    return tf_idx



def predict_epb(
        model_path,
        region, ref_genome,atac_seq,
        device,
        cop_type
):
    args, parser = get_args()

    pretrain_model = build_epd_model(args)
    pretrain_model.load_state_dict(torch.load(model_path,map_location=torch.device(device)))
    pretrain_model.eval()
    pretrain_model.to(device)
    start,end=region
    inputs=generate_input(start,end,ref_genome,atac_seq)
    inputs=torch.tensor(inputs).float().to(device)
    with torch.no_grad():
        pred_epi=torch.sigmoid(pretrain_model(inputs)).detach().cpu().numpy()
    if cop_type == 'Micro-C':
        return pred_epi[10:-10,:]
    else:
        return pred_epi[20:-20,:]


def predict_epis(
        model_path,
        region, ref_genome,atac_seq,
        device,
        cop_type
):
    args, parser = get_args()
    epi_args = parser_args_epi(parser)
    pretrain_model = build_track_model(epi_args)
    pretrain_model.load_state_dict(torch.load(model_path,map_location=torch.device(device)))
    pretrain_model.eval()
    pretrain_model.to(device)
    inputs=[]
    start,end=region
    if cop_type == 'Micro-C':
        inputs.append(generate_input(start,end,ref_genome,atac_seq))
    else:
        for loc in range(start+20000,end-20000,480000):
            inputs.append(generate_input(loc-10000,loc+490000,ref_genome,atac_seq))
    inputs=np.stack(inputs)
    inputs=torch.tensor(inputs).float().to(device)
    pred_epi=[]
    with torch.no_grad():
        for i in range(inputs.shape[0]):
            pred_epi.append(pretrain_model(inputs[i:i+1]).detach().cpu().numpy())

    out_epi = rearrange(np.vstack(pred_epi), 'i j k -> (i j) k')
    return out_epi

def predict_cage(
        model_path,
        region, ref_genome, atac_seq,
        device,
        cop_type
):
    args, parser = get_args()
    cage_args = parser_args_cage(parser)
    cage_model=build_cage_model(cage_args)
    cage_model.load_state_dict(torch.load(model_path,map_location=torch.device(device)))
    cage_model.eval()
    cage_model.to(device)
    inputs = []
    start, end = region
    if cop_type == 'Micro-C':
        inputs.append(generate_input(start, end, ref_genome, atac_seq))
    else:
        for loc in range(start + 20000, end - 20000, 480000):
            inputs.append(generate_input(loc - 10000, loc + 490000, ref_genome, atac_seq))
    inputs = np.stack(inputs)
    inputs = torch.tensor(inputs).float().to(device)
    pred_cage = []
    with torch.no_grad():
        for i in range(inputs.shape[0]):
            pred_cage.append(cage_model(inputs[i:i + 1]).detach().cpu().numpy().squeeze())
    return np.concatenate(pred_cage)

def arraytouptri(arrays,args):
    effective_lens=args.bins-2*args.crop
    triu_tup = np.triu_indices(effective_lens)
    temp=np.zeros((effective_lens,effective_lens))
    temp[triu_tup]=arrays
    return temp
def complete_mat(mat):
    temp = mat.copy()
    np.fill_diagonal(temp,0)
    mat= mat+temp.T
    return mat


def predict_hic(
        model_path,
        region, ref_genome,atac_seq,
        device
):
    args, parser = get_args()
    hic_args = parser_args_hic(parser)
    hic_model = build_hic_model(hic_args)
    hic_model.load_state_dict(torch.load(model_path,map_location=torch.device(device)))
    hic_model.eval()
    hic_model.to(device)
    start,end=region
    inputs=np.stack([generate_input(start,end,ref_genome,atac_seq)])
    inputs=torch.tensor(inputs).float().to(device)
    with torch.no_grad():
        temp=hic_model(inputs).detach().cpu().numpy().squeeze()
    return np.stack([complete_mat(arraytouptri(temp[:,i], hic_args)) for i in range(temp.shape[-1])])


def predict_microc(
        model_path,
        region, ref_genome,atac_seq,
        device
):
    args, parser = get_args()
    microc_args = parser_args_microc(parser)
    microc_model = build_microc_model(microc_args)
    microc_model.load_state_dict(torch.load(model_path,map_location=torch.device(device)))
    microc_model.eval()
    microc_model.to(device)
    start,end=region
    inputs=np.stack([generate_input(start,end,ref_genome,atac_seq)])
    inputs=torch.tensor(inputs).float().to(device)
    with torch.no_grad():
        temp=microc_model(inputs).detach().cpu().numpy().squeeze()
    return complete_mat(arraytouptri(temp, microc_args))


def filetobrowser(out_epis,out_cages,out_cop,chrom,start,end,file_id):
    with open('data/epigenomes.txt', 'r') as f:
        epigenomes = f.read().splitlines()

    files_to_zip = file_id
    if os.path.exists(files_to_zip):
        shutil.rmtree(files_to_zip)
    os.mkdir(files_to_zip)

    hdr=[]
    with open('data/chrom_size_hg38.txt', 'r') as f:
        for line in f:
            tmp=line.strip().split('\t')
            hdr.append((tmp[0],int(tmp[1])))


    for i in range(out_epis.shape[1]):
        bwfile = pyBigWig.open(os.path.join(files_to_zip,"%s.bigWig"%epigenomes[i]), 'w')
        bwfile.addHeader(hdr)
        bwfile.addEntries(['chr' + str(chrom)]*out_epis.shape[0],[loc for loc in range(start,end,1000)],
                          ends=[loc+1000 for loc in range(start,end,1000)],values=out_epis[:,i].tolist())
        bwfile.close()
    bwfile = pyBigWig.open(os.path.join(files_to_zip,"cage.bigWig"),'w')
    bwfile.addHeader(hdr)

    bwfile.addEntries(['chr' + str(chrom)] * out_cages.shape[0], [loc for loc in range(start, end, 1000)],
                      ends=[loc + 1000 for loc in range(start, end, 1000)], values=out_cages.tolist())
    bwfile.close()
    cop_lines=[]

    interval=1000 if out_cop.shape[-1]==480 else 5000
    if out_cop.shape[-1]==480:
        for bin1 in range(out_cop.shape[-1]):
            for bin2 in range(bin1,out_cop.shape[-1],1):
                # tmp=['chr' + str(chrom),str(start+bin1*interval),str(start+(bin1+1)*interval),'chr' + str(chrom),
                #                   str(start + bin2 * interval), str(start + (bin2 + 1) * interval),'.',str(np.around(out_cop[bin1,bin2],2)),'.','.'
                #      ]
                tmp = ['0', 'chr' + str(chrom), str(start + bin1 * interval), '0', '0', 'chr' + str(chrom),
                       str(start + bin2 * interval), '1', str(np.around(out_cop[bin1, bin2], 2))]
                cop_lines.append('\t'.join(tmp)+'\n')
        with open(os.path.join(files_to_zip,"microc.bedpe"),'w') as f:
            f.writelines(cop_lines)
    else:
        types=['CTCF_ChIA-PET','POLR2_ChIA-PET','Hi-C']
        for i in range(len(types)):
            for bin1 in range(out_cop.shape[-1]):
                for bin2 in range(bin1, out_cop.shape[-1], 1):
                    tmp=['0','chr' + str(chrom), str(start + bin1 * interval),'0','0','chr' +str(chrom),str(start + bin2 * interval),'1',str(np.around(out_cop[i,bin1, bin2], 2))]
                    cop_lines.append('\t'.join(tmp) + '\n')
            with open(os.path.join(files_to_zip,"%s.bedpe"%types[i]), 'w') as f:
                f.writelines(cop_lines)

    out_zipfile = ZipFile("results/formatted_%s.zip" % file_id, "w", zipfile.ZIP_DEFLATED)
    for file_to_zip in os.listdir(files_to_zip):
        file_to_zip_full_path = os.path.join(files_to_zip, file_to_zip)
        out_zipfile.write(filename=file_to_zip_full_path, arcname=file_to_zip)

    out_zipfile.close()
    shutil.rmtree(files_to_zip)
    return "results/formatted_%s.zip"%file_id