File size: 9,825 Bytes
2e9cf56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# some of following codes are borrowed from https://github.com/lucidrains/enformer-pytorch

import math
import torch
from torch import nn, einsum
from einops import rearrange, reduce
from einops.layers.torch import Rearrange
import torch.nn.functional as F

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def map_values(fn, d):
    return {key: fn(values) for key, values in d.items()}

def exponential_linspace_int(start, end, num, divisible_by = 1):
    def _round(x):
        return int(round(x / divisible_by) * divisible_by)

    base = math.exp(math.log(end / start) / (num - 1))
    return [_round(start * base**i) for i in range(num)]

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

# losses and metrics


def pearson_corr_coef(x, y, eps = 1e-8):
    x2 = x * x
    y2 = y * y
    xy = x * y
    ex = x.mean(dim = 1)
    ey = y.mean(dim = 1)
    exy = xy.mean(dim = 1)
    ex2 = x2.mean(dim = 1)
    ey2 = y2.mean(dim = 1)
    r = (exy - ex * ey) / (torch.sqrt(ex2 - (ex * ex)) * torch.sqrt(ey2 - (ey * ey)) + eps)
    return r.mean(dim = -1)

# relative positional encoding functions

def get_positional_features_exponential(positions, features, seq_len, min_half_life = 3.):
    max_range = math.log(seq_len) / math.log(2.)
    half_life = 2 ** torch.linspace(min_half_life, max_range, features, device = positions.device)
    half_life = half_life[None, ...]
    positions = positions.abs()[..., None]
    return torch.exp(-math.log(2.) / half_life * positions)

def get_positional_features_central_mask(positions, features, seq_len):
    center_widths = 2 ** torch.arange(1, features + 1, device = positions.device).float()
    center_widths = center_widths - 1
    return (center_widths[None, ...] > positions.abs()[..., None]).float()

def gamma_pdf(x, concentration, rate):
    log_unnormalized_prob = torch.xlogy(concentration - 1., x) - rate * x
    log_normalization = (torch.lgamma(concentration) - concentration * torch.log(rate))
    return torch.exp(log_unnormalized_prob - log_normalization)

def get_positional_features_gamma(positions, features, seq_len, stddev = None, start_mean = None, eps = 1e-8):
    if not exists(stddev):
        stddev = seq_len / (2 * features)

    if not exists(start_mean):
        start_mean = seq_len / features

    mean = torch.linspace(start_mean, seq_len, features, device = positions.device)
    mean = mean[None, ...]
    concentration = (mean / stddev) ** 2
    rate = mean / stddev ** 2
    probabilities = gamma_pdf(positions.float().abs()[..., None], concentration, rate)
    probabilities = probabilities + eps
    outputs = probabilities / torch.amax(probabilities)
    return outputs

def get_positional_embed(seq_len, feature_size, device):
    distances = torch.arange(-seq_len + 1, seq_len, device = device)

    feature_functions = [
        get_positional_features_exponential,
        get_positional_features_central_mask,
        get_positional_features_gamma
    ]

    num_components = len(feature_functions) * 2

    if (feature_size % num_components) != 0:
        raise ValueError(f'feature size is not divisible by number of components ({num_components})')

    num_basis_per_class = feature_size // num_components

    embeddings = []
    for fn in feature_functions:
        embeddings.append(fn(distances, num_basis_per_class, seq_len))

    embeddings = torch.cat(embeddings, dim = -1)
    embeddings = torch.cat((embeddings, torch.sign(distances)[..., None] * embeddings), dim = -1)
    return embeddings

def relative_shift(x):
    to_pad = torch.zeros_like(x[..., :1])
    x = torch.cat((to_pad, x), dim = -1)
    _, h, t1, t2 = x.shape
    x = x.reshape(-1, h, t2, t1)
    x = x[:, :, 1:, :]
    x = x.reshape(-1, h, t1, t2 - 1)
    return x[..., :((t2 + 1) // 2)]

# classes

class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) + x

class GELU(nn.Module):
    def forward(self, x):
        return torch.sigmoid(1.702 * x) * x


class Attention(nn.Module):
    def __init__(
        self,dim,num_rel_pos_features,
        heads = 8,
        dim_key = 64,
        dim_value = 64,
        dropout = 0.,
        pos_dropout = 0.
    ):
        super().__init__()
        self.scale = dim_key ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(dim, dim_key * heads, bias = False)
        self.to_k = nn.Linear(dim, dim_key * heads, bias = False)
        self.to_v = nn.Linear(dim, dim_value * heads, bias = False)

        self.to_out = nn.Linear(dim_value * heads, dim)
        nn.init.zeros_(self.to_out.weight)
        nn.init.zeros_(self.to_out.bias)

        # relative positional encoding

        self.num_rel_pos_features = num_rel_pos_features

        self.to_rel_k = nn.Linear(num_rel_pos_features, dim_key * heads, bias = False)
        self.rel_content_bias = nn.Parameter(torch.randn(1, heads, 1, dim_key))
        self.rel_pos_bias = nn.Parameter(torch.randn(1, heads, 1, dim_key))

        self.pos_dropout = nn.Dropout(pos_dropout)
        self.attn_dropout = nn.Dropout(dropout)

    def forward(self, x):
        n, h, device = x.shape[-2], self.heads, x.device

        q = self.to_q(x)
        k = self.to_k(x)
        v = self.to_v(x)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

        q = q * self.scale

        content_logits = einsum('b h i d, b h j d -> b h i j', q + self.rel_content_bias, k)

        positions = get_positional_embed(n, self.num_rel_pos_features, device)
        positions = self.pos_dropout(positions)
        rel_k = self.to_rel_k(positions)

        rel_k = rearrange(rel_k, 'n (h d) -> h n d', h = h)
        rel_logits = einsum('b h i d, h j d -> b h i j', q + self.rel_pos_bias, rel_k)
        rel_logits = relative_shift(rel_logits)

        logits = content_logits + rel_logits
        attn = logits.softmax(dim = -1)
        attn = self.attn_dropout(attn)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)

class Enformer(nn.Module):
    def __init__(
        self,
        dim = 512,
        depth = 4,
        heads = 6,
        attn_dim_key = 64,
        dropout_rate = 0.2,
        attn_dropout = 0.05,
        pos_dropout = 0.01,
    ):
        super().__init__()
        self.dim = dim
        transformer = []
        for _ in range(depth):
            transformer.append(nn.Sequential(
                Residual(nn.Sequential(
                    nn.LayerNorm(dim),
                    Attention(
                        dim,
                        heads = heads,
                        dim_key = attn_dim_key,
                        dim_value = dim // heads,
                        dropout = attn_dropout,
                        pos_dropout = pos_dropout,
                        num_rel_pos_features = dim // heads
                    ),
                    nn.Dropout(dropout_rate)
                )),
                Residual(nn.Sequential(
                    nn.LayerNorm(dim),
                    nn.Linear(dim, dim * 2),
                    nn.Dropout(dropout_rate),
                    nn.ReLU(),
                    nn.Linear(dim * 2, dim),
                    nn.Dropout(dropout_rate)
                ))
            ))

        self.transformer = nn.Sequential(
            # Rearrange('b d n -> b n d'),
            *transformer
        )

    def forward(self,x):

        x = self.transformer(x)

        return x

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        conv_kernel_size1 = 10
        conv_kernel_size2 = 8
        pool_kernel_size1 = 5
        pool_kernel_size2 = 4
        self.conv_net = nn.Sequential(
            nn.Conv1d(5, 256, kernel_size=conv_kernel_size1),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.1),
            nn.Conv1d(256, 256, kernel_size=conv_kernel_size1),
            # nn.GroupNorm(16, 256),
            nn.BatchNorm1d(256,track_running_stats=False),
            nn.ReLU(inplace=True),
            nn.MaxPool1d(kernel_size=pool_kernel_size1, stride=pool_kernel_size1),
            nn.Dropout(p=0.1),
            nn.Conv1d(256, 360, kernel_size=conv_kernel_size2),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.1),
            nn.Conv1d(360, 360, kernel_size=conv_kernel_size2),
            nn.BatchNorm1d(360,track_running_stats=False),
            # nn.GroupNorm(36, 360),
            nn.ReLU(inplace=True),
            nn.MaxPool1d(kernel_size=pool_kernel_size2, stride=pool_kernel_size2),
            nn.Dropout(p=0.1),
            nn.Conv1d(360, 512, kernel_size=conv_kernel_size2),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.2),
            nn.Conv1d(512, 512, kernel_size=conv_kernel_size2),
            nn.BatchNorm1d(512,track_running_stats=False),
            # nn.GroupNorm(32, 512),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.2))
        self.num_channels = 512
    def forward(self, x):
        out = self.conv_net(x)
        return out


class AttentionPool(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.pool_fn = Rearrange('b (n p) d-> b n p d', n=1)
        self.to_attn_logits = nn.Parameter(torch.eye(dim))

    def forward(self, x):
        attn_logits = einsum('b n d, d e -> b n e', x, self.to_attn_logits)
        x = self.pool_fn(x)
        logits = self.pool_fn(attn_logits)

        attn = logits.softmax(dim = -2)
        return (x * attn).sum(dim = -2).squeeze()



# class MSE_loss(nn.Module):
#     def __init__(self):
#         super().__init__()
#     def forward(self,pred,target):