File size: 5,678 Bytes
a1372cb 237ec40 a1372cb 237ec40 a1372cb 237ec40 32028fb 237ec40 32028fb 237ec40 1ba9479 237ec40 32028fb 237ec40 1ba9479 32028fb 1ba9479 32028fb 1ba9479 32028fb 237ec40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from langchain import LLMChain
from langchain.chains import SequentialChain
from langchain.prompts import ChatPromptTemplate
def get_vacancy_skills_chain(llm) -> LLMChain:
template_vacancy_get_skills = """
Given the following vacancy delimited by three backticks, retrieve the skills requested in the vacancy.
Describe the skills in preferably 1 word and maximum 3 words.
Return the skills as a JSON list on 1 line, do not add newlines or any other text.
```
{vacancy}
```
"""
prompt_vacancy_skills = ChatPromptTemplate.from_template(
template=template_vacancy_get_skills
)
vacancy_skills = LLMChain(
llm=llm, prompt=prompt_vacancy_skills, output_key="vacancy_skills_predicted"
)
return vacancy_skills
def get_resume_skills_chain(llm) -> LLMChain:
template_resume_skills = """
Given the following resume delimited by three backticks, retrieve the skills from the resume.
Describe the skills in preferably 1 word and maximum 3 words.
Return the skills as a JSON list on 1 line, do not add newlines or any other text.
```
{resume}
```
"""
prompt_resume_skills = ChatPromptTemplate.from_template(
template=template_resume_skills
)
resume_skills = LLMChain(
llm=llm, prompt=prompt_resume_skills, output_key="resume_skills_predicted"
)
return resume_skills
def get_skills_intersection_chain(llm) -> LLMChain:
"""
# deprecated prompt:
# Can you return the intersection of the skills above delimited by backticks with the list of skills below delimited by backticks.
# Consider skills that are not exact but are close to each other in terms of meaning or usage.
# For example, 'Python programming' and 'Python' should be considered a match. Similarly, 'Strong problem-solving skills' and 'problem solver' should be considered the same.
# Please consider all skills in lowercase for matching. We're trying to match the skills of a job candidate (second list) with the requirements of a job vacancy (first list).
# Please keep this context in mind while performing the matching.
# If no skills match do not make up a response and return an empty list.
# Return the intersection as a JSON list on 1 line, do not add newlines or any other text.
"""
template_get_skills_intersection = """
```
{vacancy_skills_predicted}
```
Can you return the intersection of the skills above delimited by backticks with the list of skills below delimited by backticks.
Consider skills that are not exact but are close to each other in terms of meaning or usage. For example, 'Python programming' and 'Python' should be considered a match. Similarly, 'TensorFlow machine learning' and 'Machine Learning with TensorFlow' should be considered the same. Please consider all skills in lowercase for matching. We're trying to match the skills of a job candidate (second list) with the requirements of a job vacancy (first list). Please keep this context in mind while performing the matching.
If no skills match do not make up a response and return an empty list.
Return the intersection as a JSON list on 1 line, do not add newlines or any other text.
```
{resume_skills_predicted}
```
"""
prompt_get_skills_intersection = ChatPromptTemplate.from_template(
template=template_get_skills_intersection
)
skills_intersection = LLMChain(
llm=llm,
prompt=prompt_get_skills_intersection,
output_key="skills_intersection_predicted",
)
return skills_intersection
def get_skills_chain(llm) -> SequentialChain:
vacancy_skills_chain = get_vacancy_skills_chain(llm=llm)
resume_skills_chain = get_resume_skills_chain(llm=llm)
intersection_skills_chain = get_skills_intersection_chain(llm=llm)
return SequentialChain(
chains=[vacancy_skills_chain, resume_skills_chain, intersection_skills_chain],
input_variables=["vacancy", "resume"],
output_variables=[
vacancy_skills_chain.output_key,
resume_skills_chain.output_key,
intersection_skills_chain.output_key,
],
verbose=False,
)
def get_skills_match(llm, vacancy, resume) -> SequentialChain:
template_get_skills_intersection = """
```
VACANCY:
{vacancy}
```
```
RESUME:
{resume}
```
Both the vacancy and resume are delimited by three backticks.
Can you list any matches you find in both the vacancy and the resume.
Each match is constructed as the following JSON object:
"content" : < any match related to job specific content, experience and location >
"resume_index" : < the number of times the match occurred in the resume >
"vacancy_index" : < the number of times the match occurred in the vacancy >
Return all the JSON objects as a JSON list with no new lines or any other text.
If there is no match at all, do not make up a response and return an empty list.
"""
prompt_get_skills_intersection = ChatPromptTemplate.from_template(
template=template_get_skills_intersection
)
skills_match_chain = LLMChain(
llm=llm,
prompt=prompt_get_skills_intersection,
output_key="skills_match_predicted",
)
chain = SequentialChain(
chains=[skills_match_chain],
input_variables=["vacancy", "resume"],
output_variables=[
skills_match_chain.output_key,
],
verbose=False,
)
return chain({"vacancy": vacancy, "resume": resume})
|