Spaces:
Sleeping
Sleeping
File size: 13,139 Bytes
078c1b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
import shutil
import json
import pandas as pd
import chainlit as cl
from dotenv import load_dotenv
from langchain_core.documents import Document
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.tools import tool
from langchain.schema import HumanMessage
from typing_extensions import List, TypedDict
from operator import itemgetter
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.prompts import MessagesPlaceholder
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
load_dotenv()
UPLOAD_PATH = "upload/"
OUTPUT_PATH = "output/"
INITIAL_DATA_PATH = "./data/Instruments_Definitions.xlsx"
os.makedirs(UPLOAD_PATH, exist_ok=True)
os.makedirs(OUTPUT_PATH, exist_ok=True)
# Initialize embeddings model
model_id = "Snowflake/snowflake-arctic-embed-m"
embedding_model = HuggingFaceEmbeddings(model_name=model_id)
semantic_splitter = SemanticChunker(embedding_model, add_start_index=True, buffer_size=30)
llm = ChatOpenAI(model="gpt-4o-mini")
# Export comparison prompt
export_prompt = """
CONTEXT:
{context}
QUERY:
{question}
You are a helpful assistant. Use the available context to answer the question.
Between these two files containing protocols, identify and match **entire assessment sections** based on conceptual similarity. Do NOT match individual questions.
### **Output Format:**
Return the response in **valid JSON format** structured as a list of dictionaries, where each dictionary contains:
[
{{
"Derived Description": "A short name for the matched concept",
"Protocol_1": "Protocol 1 - Matching Element",
"Protocol_2": "Protocol 2 - Matching Element"
}},
...
]
### **Example Output:**
[
{{
"Derived Description": "Pain Coping Strategies",
"Protocol_1": "Pain Coping Strategy Scale (PCSS-9)",
"Protocol_2": "Chronic Pain Adjustment Index (CPAI-10)"
}},
{{
"Derived Description": "Work Stress and Fatigue",
"Protocol_1": "Work-Related Stress Scale (WRSS-8)",
"Protocol_2": "Occupational Fatigue Index (OFI-7)"
}},
...
]
### Rules:
1. Only output **valid JSON** with no explanations, summaries, or markdown formatting.
2. Ensure each entry in the JSON list represents a single matched data element from the two protocols.
3. If no matching element is found in a protocol, leave it empty ("").
4. **Do NOT include headers, explanations, or additional formatting**—only return the raw JSON list.
5. It should include all the elements in the two protocols.
6. If it cannot match the element, create the row and include the protocol it did find and put "could not match" in the other protocol column.
7. protocol should be the between
"""
compare_export_prompt = ChatPromptTemplate.from_template(export_prompt)
QUERY_PROMPT = """
You are a helpful assistant. Use the available context to answer the question concisely and informatively.
CONTEXT:
{context}
QUERY:
{question}
Provide a natural-language response using the given information. If you do not know the answer, say so.
"""
query_prompt = ChatPromptTemplate.from_template(QUERY_PROMPT)
@tool
def document_query_tool(question: str) -> str:
"""Retrieves relevant document sections and answers questions based on the uploaded documents."""
retriever = cl.user_session.get("qdrant_retriever")
if not retriever:
return "Error: No documents available for retrieval. Please upload two PDF files first."
retriever = retriever.with_config({"k": 10})
# Use a RAG chain similar to the comparison tool
rag_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| query_prompt | llm | StrOutputParser()
)
response_text = rag_chain.invoke({"question": question})
# Get the retrieved docs for context
retrieved_docs = retriever.invoke(question)
return {
"messages": [HumanMessage(content=response_text)],
"context": retrieved_docs
}
@tool
def document_comparison_tool(question: str) -> str:
"""Compares the two uploaded documents, identifies matched elements, exports them as JSON, formats into CSV, and provides a download link."""
# Retrieve the vector database retriever
retriever = cl.user_session.get("qdrant_retriever")
if not retriever:
return "Error: No documents available for retrieval. Please upload two PDF files first."
# Process query using RAG
rag_chain = (
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
| compare_export_prompt | llm | StrOutputParser()
)
response_text = rag_chain.invoke({"question": question})
# Parse response and save as CSV
try:
structured_data = json.loads(response_text)
if not structured_data:
return "Error: No matched elements found."
# Define output file path
file_path = os.path.join(OUTPUT_PATH, "comparison_results.csv")
# Save to CSV
df = pd.DataFrame(structured_data, columns=["Derived Description", "Protocol_1", "Protocol_2"])
df.to_csv(file_path, index=False)
# Send the message with the file directly from the tool
cl.run_sync(
cl.Message(
content="Comparison complete! Download the CSV below:",
elements=[cl.File(name="comparison_results.csv", path=file_path, display="inline")],
).send()
)
# Return a simple confirmation message
return "Comparison results have been generated and displayed."
except json.JSONDecodeError:
return "Error: Response is not valid JSON."
# Define tools for the agent
tools = [document_query_tool, document_comparison_tool]
# Set up the agent with a system prompt
system_prompt = """You are an intelligent document analysis assistant. You have access to two tools:
1. document_query_tool: Use this when a user wants information or has questions about the content of uploaded documents.
2. document_comparison_tool: Use this when a user wants to compare elements between two uploaded documents or export comparison results.
Analyze the user's request carefully to determine which tool is most appropriate.
"""
# Create the agent using OpenAI function calling
agent_prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
agent = create_openai_tools_agent(
llm=ChatOpenAI(model="gpt-4o", temperature=0),
tools=tools,
prompt=agent_prompt
)
# Create the agent executor
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
verbose=True,
handle_parsing_errors=True,
)
def initialize_vector_store():
"""Initialize an empty Qdrant vector store"""
try:
# Create a Qdrant client for in-memory storage
client = QdrantClient(location=":memory:")
# Create the collection with the appropriate vector size
# Snowflake/snowflake-arctic-embed-m produces 768-dimensional vectors
vector_size = 768 # Changed from 1536 to match your embedding model
# Check if collection exists, if not create it
collections = client.get_collections().collections
collection_names = [collection.name for collection in collections]
if "document_comparison" not in collection_names:
client.create_collection(
collection_name="document_comparison",
vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE)
)
print("Created new collection: document_comparison")
# Create the vector store with the client
vectorstore = Qdrant(
client=client,
collection_name="document_comparison",
embeddings=embedding_model
)
print("Vector store initialized successfully")
return vectorstore
except Exception as e:
print(f"Error initializing vector store: {str(e)}")
return None
async def load_reference_data(vectorstore):
"""Load reference Excel data into the vector database"""
if not os.path.exists(INITIAL_DATA_PATH):
print(f"Warning: Initial data file {INITIAL_DATA_PATH} not found")
return vectorstore
try:
# Load Excel file
df = pd.read_excel(INITIAL_DATA_PATH)
# Convert DataFrame to documents
documents = []
for _, row in df.iterrows():
# Combine all columns into a single text
content = " ".join([f"{col}: {str(val)}" for col, val in row.items()])
doc = Document(page_content=content, metadata={"source": "Instruments_Definitions.xlsx"})
documents.append(doc)
# Add documents to vector store
if documents:
vectorstore.add_documents(documents)
print(f"Successfully loaded {len(documents)} entries from {INITIAL_DATA_PATH}")
return vectorstore
except Exception as e:
print(f"Error loading reference data: {str(e)}")
return vectorstore
async def process_uploaded_files(files, vectorstore):
"""Process uploaded PDF files and add them to the vector store"""
documents_with_metadata = []
for file in files:
file_path = os.path.join(UPLOAD_PATH, file.name)
shutil.copyfile(file.path, file_path)
loader = PyMuPDFLoader(file_path)
documents = loader.load()
for doc in documents:
source_name = file.name
chunks = semantic_splitter.split_text(doc.page_content)
for chunk in chunks:
doc_chunk = Document(page_content=chunk, metadata={"source": source_name})
documents_with_metadata.append(doc_chunk)
if documents_with_metadata:
# Add documents to vector store
vectorstore.add_documents(documents_with_metadata)
print(f"Added {len(documents_with_metadata)} chunks from uploaded files")
return True
return False
@cl.on_chat_start
async def start():
# Initialize chat history for the agent
cl.user_session.set("chat_history", [])
# Initialize vector store
vectorstore = initialize_vector_store()
if not vectorstore:
await cl.Message("Error: Could not initialize vector store.").send()
return
# Load reference data
with cl.Step("Loading reference data"):
vectorstore = await load_reference_data(vectorstore)
cl.user_session.set("qdrant_vectorstore", vectorstore)
cl.user_session.set("qdrant_retriever", vectorstore.as_retriever())
await cl.Message("Reference data loaded successfully!").send()
# Ask for PDF uploads
files = await cl.AskFileMessage(
content="Please upload **two PDF files** for comparison:",
accept=["application/pdf"],
max_files=2
).send()
if len(files) != 2:
await cl.Message("Error: You must upload exactly two PDF files.").send()
return
# Process uploaded files
with cl.Step("Processing uploaded files"):
success = await process_uploaded_files(files, vectorstore)
if success:
# Update the retriever with the latest vector store
cl.user_session.set("qdrant_retriever", vectorstore.as_retriever())
await cl.Message("Files uploaded and processed successfully! You can now enter your query.").send()
else:
await cl.Message("Error: Unable to process files. Please try again.").send()
@cl.on_message
async def handle_message(message: cl.Message):
# Get chat history
chat_history = cl.user_session.get("chat_history", [])
# Run the agent
with cl.Step("Agent thinking"):
response = await cl.make_async(agent_executor.invoke)(
{"input": message.content, "chat_history": chat_history}
)
# Handle the response based on the tool that was called
if isinstance(response["output"], dict) and "messages" in response["output"]:
# This is from document_query_tool
await cl.Message(response["output"]["messages"][0].content).send()
else:
# Generic response (including the confirmation from document_comparison_tool)
await cl.Message(content=str(response["output"])).send()
# Update chat history with the new exchange
chat_history.extend([
HumanMessage(content=message.content),
HumanMessage(content=str(response["output"]))
])
cl.user_session.set("chat_history", chat_history) |