File size: 9,275 Bytes
c39db41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import logging
import os
import gc
from pathlib import Path

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
import shutil


def train_gpt(custom_model,version, language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path, max_audio_length=255995):
    #  Logging parameters
    RUN_NAME = "GPT_XTTS_FT"
    PROJECT_NAME = "XTTS_trainer"
    DASHBOARD_LOGGER = "tensorboard"
    LOGGER_URI = None

    # print(f"XTTS version = {version}")

    # Set here the path that the checkpoints will be saved. Default: ./run/training/
    OUT_PATH = os.path.join(output_path, "run", "training")

    # Training Parameters
    OPTIMIZER_WD_ONLY_ON_WEIGHTS = True  # for multi-gpu training please make it False
    START_WITH_EVAL = False  # if True it will star with evaluation
    BATCH_SIZE = batch_size  # set here the batch size
    GRAD_ACUMM_STEPS = grad_acumm  # set here the grad accumulation steps


    # Define here the dataset that you want to use for the fine-tuning on.
    config_dataset = BaseDatasetConfig(
        formatter="coqui",
        dataset_name="ft_dataset",
        path=os.path.dirname(train_csv),
        meta_file_train=train_csv,
        meta_file_val=eval_csv,
        language=language,
    )

    # Add here the configs of the datasets
    DATASETS_CONFIG_LIST = [config_dataset]

    # Define the path where XTTS v2.0.1 files will be downloaded
    CHECKPOINTS_OUT_PATH = os.path.join(Path.cwd(), "base_models",f"{version}")
    os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)


    # DVAE files
    DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
    MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"

    # Set the path to the downloaded files
    DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
    MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))

    # download DVAE files if needed
    if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
        print(" > Downloading DVAE files!")
        ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)


    # Download XTTS v2.0 checkpoint if needed
    TOKENIZER_FILE_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/vocab.json"
    XTTS_CHECKPOINT_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/model.pth"
    XTTS_CONFIG_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/{version}/config.json"
    XTTS_SPEAKER_LINK = f"https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/speakers_xtts.pth"

    # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
    TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK))  # vocab.json file
    XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK))  # model.pth file
    XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))  # config.json file
    XTTS_SPEAKER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_SPEAKER_LINK))  # speakers_xtts.pth file

    # download XTTS v2.0 files if needed
    if not os.path.isfile(TOKENIZER_FILE) or not os.path.isfile(XTTS_CHECKPOINT):
        print(f" > Downloading XTTS v{version} files!")
        ModelManager._download_model_files(
            [TOKENIZER_FILE_LINK, XTTS_CHECKPOINT_LINK, XTTS_CONFIG_LINK,XTTS_SPEAKER_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
        )

    # Transfer this files to ready folder
    READY_MODEL_PATH = os.path.join(output_path,"ready")
    if not os.path.exists(READY_MODEL_PATH):
        os.makedirs(READY_MODEL_PATH)

    NEW_TOKENIZER_FILE = os.path.join(READY_MODEL_PATH, "vocab.json")
    # NEW_XTTS_CHECKPOINT = os.path.join(READY_MODEL_PATH, "model.pth")
    NEW_XTTS_CONFIG_FILE = os.path.join(READY_MODEL_PATH, "config.json")
    NEW_XTTS_SPEAKER_FILE = os.path.join(READY_MODEL_PATH, "speakers_xtts.pth")

    shutil.copy(TOKENIZER_FILE, NEW_TOKENIZER_FILE)
    # shutil.copy(XTTS_CHECKPOINT, os.path.join(READY_MODEL_PATH, "model.pth"))
    shutil.copy(XTTS_CONFIG_FILE, NEW_XTTS_CONFIG_FILE)
    shutil.copy(XTTS_SPEAKER_FILE, NEW_XTTS_SPEAKER_FILE)

# Use from ready folder
    TOKENIZER_FILE = NEW_TOKENIZER_FILE # vocab.json file
    # XTTS_CHECKPOINT = NEW_XTTS_CHECKPOINT  # model.pth file
    XTTS_CONFIG_FILE = NEW_XTTS_CONFIG_FILE  # config.json file
    XTTS_SPEAKER_FILE = NEW_XTTS_SPEAKER_FILE  # speakers_xtts.pth file


    if custom_model != "":
        if os.path.exists(custom_model) and custom_model.endswith('.pth'):
            XTTS_CHECKPOINT = custom_model
            print(f" > Loading custom model: {XTTS_CHECKPOINT}")
        else:
            print(" > Error: The specified custom model is not a valid .pth file path.")

    num_workers = 8
    if language == "ja":
        num_workers = 0
    # init args and config
    model_args = GPTArgs(
        max_conditioning_length=132300,  # 6 secs
        min_conditioning_length=66150,  # 3 secs
        debug_loading_failures=False,
        max_wav_length=max_audio_length,  # ~11.6 seconds
        max_text_length=200,
        mel_norm_file=MEL_NORM_FILE,
        dvae_checkpoint=DVAE_CHECKPOINT,
        xtts_checkpoint=XTTS_CHECKPOINT,  # checkpoint path of the model that you want to fine-tune
        tokenizer_file=TOKENIZER_FILE,
        gpt_num_audio_tokens=1026,
        gpt_start_audio_token=1024,
        gpt_stop_audio_token=1025,
        gpt_use_masking_gt_prompt_approach=True,
        gpt_use_perceiver_resampler=True,
    )
    # define audio config
    audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
    # training parameters config
    config = GPTTrainerConfig(
        epochs=num_epochs,
        output_path=OUT_PATH,
        model_args=model_args,
        run_name=RUN_NAME,
        project_name=PROJECT_NAME,
        run_description="""
            GPT XTTS training
            """,
        dashboard_logger=DASHBOARD_LOGGER,
        logger_uri=LOGGER_URI,
        audio=audio_config,
        batch_size=BATCH_SIZE,
        batch_group_size=48,
        eval_batch_size=BATCH_SIZE,
        num_loader_workers=num_workers,
        eval_split_max_size=256,
        print_step=50,
        plot_step=100,
        log_model_step=100,
        save_step=1000,
        save_n_checkpoints=1,
        save_checkpoints=True,
        # target_loss="loss",
        print_eval=False,
        # Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
        optimizer="AdamW",
        optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
        optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
        lr=5e-06,  # learning rate
        lr_scheduler="MultiStepLR",
        # it was adjusted accordly for the new step scheme
        lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
        test_sentences=[],
    )

    # init the model from config
    model = GPTTrainer.init_from_config(config)

    # load training samples
    train_samples, eval_samples = load_tts_samples(
        DATASETS_CONFIG_LIST,
        eval_split=True,
        eval_split_max_size=config.eval_split_max_size,
        eval_split_size=config.eval_split_size,
    )

    # init the trainer and 🚀
    trainer = Trainer(
        TrainerArgs(
            restore_path=None,  # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
            skip_train_epoch=False,
            start_with_eval=START_WITH_EVAL,
            grad_accum_steps=GRAD_ACUMM_STEPS,
        ),
        config,
        output_path=OUT_PATH,
        model=model,
        train_samples=train_samples,
        eval_samples=eval_samples,
    )
    trainer.fit()

    # get the longest text audio file to use as speaker reference
    samples_len = [len(item["text"].split(" ")) for item in train_samples]
    longest_text_idx =  samples_len.index(max(samples_len))
    speaker_ref = train_samples[longest_text_idx]["audio_file"]

    trainer_out_path = trainer.output_path
    
    # close file handlers and remove them from the logger
    for handler in logging.getLogger('trainer').handlers:
        if isinstance(handler, logging.FileHandler):
            handler.close()
            logging.getLogger('trainer').removeHandler(handler)
    
    # now you should be able to delete the log file
    log_file = os.path.join(trainer.output_path, f"trainer_{trainer.args.rank}_log.txt")
    os.remove(log_file)

    # deallocate VRAM and RAM
    del model, trainer, train_samples, eval_samples
    gc.collect()

    return XTTS_SPEAKER_FILE,XTTS_CONFIG_FILE, XTTS_CHECKPOINT, TOKENIZER_FILE, trainer_out_path, speaker_ref