File size: 4,463 Bytes
d1c980d
 
 
 
 
 
e0504bf
d1c980d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c2aaa
 
 
 
 
d1c980d
 
 
07c2aaa
 
 
 
 
 
 
 
 
 
d1c980d
 
 
07c2aaa
 
d1c980d
 
 
 
 
 
 
 
 
 
07c2aaa
f61d72c
 
 
 
 
 
 
 
 
d1c980d
 
 
 
 
 
 
 
 
 
 
 
 
 
beede85
 
 
 
 
 
 
 
 
5b68135
bc3b2e9
d1c980d
 
33131e4
d1c980d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread

model_path = 'sail/Sailor2-1B-Chat'

# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)

# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [151645]  # IDs of tokens where the generation should stop.
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:  # Checking if the last generated token is a stop token.
                return True
        return False


system_role= 'system'
user_role = 'user'
assistant_role = 'assistant'

sft_start_token =  "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"

system_prompt= \
'You are an AI assistant named Sailor2, created by Sea AI Lab. \
As an AI assistant, you can answer questions in English, Chinese, and Southeast Asian languages \
such as Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray. \
Your responses should be friendly, unbiased, informative, detailed, and faithful.'

system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"

# Function to generate model predictions.
@spaces.GPU()
def predict(message, history):
    # 初始化对话历史格式
    if history is None:
        history = []

    # 在历史中添加当前用户输入,临时设置机器人的回复为空
    history_transformer_format = history + [[message, ""]]
    stop = StopOnTokens()

    # 格式化输入为模型需要的格式
    messages = (
        system_prompt
        + sft_end_token.join([
            sft_end_token.join([
                f"\n{sft_start_token}{user_role}\n" + item[0],
                f"\n{sft_start_token}{assistant_role}\n" + item[1]
            ]) for item in history_transformer_format
        ])
    )
    model_inputs = tokenizer([messages], return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=model_inputs["input_ids"],
        attention_mask=model_inputs["attention_mask"],
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=True,
        top_p=0.8,
        top_k=20,
        temperature=0.7,
        num_beams=1,
        stopping_criteria=StoppingCriteriaList([stop]),
        repetition_penalty=1.1,
    )

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()  # Starting the generation in a separate thread.
    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        if sft_end_token in partial_message:  # Breaking the loop if the stop token is generated.
            break
        yield partial_message


css = """
full-height {
    height: 100%;
}
"""

prompt_examples = [
    'How to cook a fish?',
    'Cara memanggang ikan',
    'วิธีย่างปลา',
    'Cách nướng cá'
]

# placeholder = """
# <div style="opacity: 0.5;">
#     <img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;">
#     <br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions:
#     <br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
# </div>
# """

placeholder = ""

chatbot = gr.Chatbot(label='Sailor', placeholder=placeholder) 
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
    # gr.Markdown("""<center><font size=8>Sailor-Chat Bot⚓</center>""")
    gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor2/raw/main/misc/sailor2_wide_banner.jpg" style="height: 110px"/><p>""")
    gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)

    demo.launch()  # Launching the web interface.