File size: 8,923 Bytes
7d421db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
from logging import warnings
import torch
from typing import Union
from types import SimpleNamespace
from models.unet_3d_condition import UNet3DConditionModel
from transformers import CLIPTextModel
from utils.convert_diffusers_to_original_ms_text_to_video import convert_unet_state_dict, convert_text_enc_state_dict_v20

from .lora import (
    extract_lora_ups_down,
    inject_trainable_lora_extended,
    save_lora_weight,
    train_patch_pipe,
    monkeypatch_or_replace_lora,
    monkeypatch_or_replace_lora_extended
)


FILE_BASENAMES = ['unet', 'text_encoder']
LORA_FILE_TYPES = ['.pt', '.safetensors']
CLONE_OF_SIMO_KEYS = ['model', 'loras', 'target_replace_module', 'r']
STABLE_LORA_KEYS = ['model', 'target_module', 'search_class', 'r', 'dropout', 'lora_bias']

lora_versions = dict(
    stable_lora = "stable_lora",
    cloneofsimo = "cloneofsimo"
)

lora_func_types = dict(
    loader = "loader",
    injector = "injector"
)

lora_args = dict(
    model = None,
    loras = None,
    target_replace_module = [],
    target_module = [],
    r = 4,
    search_class = [torch.nn.Linear],
    dropout = 0,
    lora_bias = 'none'
)

LoraVersions = SimpleNamespace(**lora_versions)
LoraFuncTypes = SimpleNamespace(**lora_func_types)

LORA_VERSIONS = [LoraVersions.stable_lora, LoraVersions.cloneofsimo]
LORA_FUNC_TYPES = [LoraFuncTypes.loader, LoraFuncTypes.injector]

def filter_dict(_dict, keys=[]):
    if len(keys) == 0:
        assert "Keys cannot empty for filtering return dict."
    
    for k in keys:
        if k not in lora_args.keys():
            assert f"{k} does not exist in available LoRA arguments"
            
    return {k: v for k, v in _dict.items() if k in keys}

class LoraHandler(object):
    def __init__(
        self, 
        version: LORA_VERSIONS = LoraVersions.cloneofsimo, 
        use_unet_lora: bool = False,
        use_text_lora: bool = False,
        save_for_webui: bool = False,
        only_for_webui: bool = False,
        lora_bias: str = 'none',
        unet_replace_modules: list = None,
        text_encoder_replace_modules: list = None
    ):
        self.version = version
        self.lora_loader = self.get_lora_func(func_type=LoraFuncTypes.loader)
        self.lora_injector = self.get_lora_func(func_type=LoraFuncTypes.injector)
        self.lora_bias = lora_bias
        self.use_unet_lora = use_unet_lora
        self.use_text_lora = use_text_lora
        self.save_for_webui = save_for_webui
        self.only_for_webui = only_for_webui
        self.unet_replace_modules = unet_replace_modules
        self.text_encoder_replace_modules = text_encoder_replace_modules
        self.use_lora = any([use_text_lora, use_unet_lora])

    def is_cloneofsimo_lora(self):
        return self.version == LoraVersions.cloneofsimo


    def get_lora_func(self, func_type: LORA_FUNC_TYPES = LoraFuncTypes.loader):

        if self.is_cloneofsimo_lora():

            if func_type == LoraFuncTypes.loader:
                return monkeypatch_or_replace_lora_extended

            if func_type == LoraFuncTypes.injector:
                return inject_trainable_lora_extended
                
        assert "LoRA Version does not exist."

    def check_lora_ext(self, lora_file: str):
        return lora_file.endswith(tuple(LORA_FILE_TYPES))

    def get_lora_file_path(
        self, 
        lora_path: str, 
        model: Union[UNet3DConditionModel, CLIPTextModel]
    ):
        if os.path.exists(lora_path):
            lora_filenames = [fns for fns in os.listdir(lora_path)]
            is_lora = self.check_lora_ext(lora_path)

            is_unet = isinstance(model, UNet3DConditionModel)
            is_text =  isinstance(model, CLIPTextModel)
            idx = 0 if is_unet else 1

            base_name = FILE_BASENAMES[idx]
            
            for lora_filename in lora_filenames:
                is_lora = self.check_lora_ext(lora_filename)
                if not is_lora:
                    continue
                
                if base_name in lora_filename:
                    return os.path.join(lora_path, lora_filename)

        return None

    def handle_lora_load(self, file_name:str, lora_loader_args: dict = None):
        self.lora_loader(**lora_loader_args)
        print(f"Successfully loaded LoRA from: {file_name}")
    
    def load_lora(self, model, lora_path: str = '', lora_loader_args: dict = None,):
        try:
            lora_file = self.get_lora_file_path(lora_path, model)

            if lora_file is not None:
                lora_loader_args.update({"lora_path": lora_file})
                self.handle_lora_load(lora_file, lora_loader_args)

            else:
                print(f"Could not load LoRAs for {model.__class__.__name__}. Injecting new ones instead...")

        except Exception as e:
            print(f"An error occured while loading a LoRA file: {e}")
                 
    def get_lora_func_args(self, lora_path, use_lora, model, replace_modules, r, dropout, lora_bias, scale):
        return_dict = lora_args.copy()
    
        if self.is_cloneofsimo_lora():
            return_dict = filter_dict(return_dict, keys=CLONE_OF_SIMO_KEYS)
            return_dict.update({
                "model": model,
                "loras": self.get_lora_file_path(lora_path, model),
                "target_replace_module": replace_modules,
                "r": r,
                "scale": scale,
                "dropout_p": dropout,
            })

        return return_dict

    def do_lora_injection(
        self, 
        model, 
        replace_modules, 
        bias='none',
        dropout=0,
        r=4,
        lora_loader_args=None,
    ):  
        REPLACE_MODULES = replace_modules

        params = None
        negation = None
        is_injection_hybrid = False
        
        if self.is_cloneofsimo_lora():
            is_injection_hybrid = True
            injector_args = lora_loader_args

            params, negation = self.lora_injector(**injector_args)  # inject_trainable_lora_extended
            for _up, _down in extract_lora_ups_down(
                model, 
                target_replace_module=REPLACE_MODULES):

                if all(x is not None for x in [_up, _down]):
                    print(f"Lora successfully injected into {model.__class__.__name__}.")

                break

            return params, negation, is_injection_hybrid

        return params, negation, is_injection_hybrid

    def add_lora_to_model(self, use_lora, model, replace_modules, dropout=0.0, lora_path='', r=16, scale=1.0):

        params = None
        negation = None

        lora_loader_args = self.get_lora_func_args(
            lora_path,
            use_lora,
            model,
            replace_modules,
            r,
            dropout,
            self.lora_bias,
            scale
        )

        if use_lora:
            params, negation, is_injection_hybrid = self.do_lora_injection(
                model, 
                replace_modules, 
                bias=self.lora_bias,
                lora_loader_args=lora_loader_args,
                dropout=dropout,
                r=r
            )

            if not is_injection_hybrid:
                self.load_lora(model, lora_path=lora_path, lora_loader_args=lora_loader_args)
        
        params = model if params is None else params
        return params, negation

    def save_cloneofsimo_lora(self, model, save_path, step, flag):
        
        def save_lora(model, name, condition, replace_modules, step, save_path, flag=None):
            if condition and replace_modules is not None:
                save_path = f"{save_path}/{step}_{name}.pt"
                save_lora_weight(model, save_path, replace_modules, flag)

        save_lora(
            model.unet, 
            FILE_BASENAMES[0], 
            self.use_unet_lora, 
            self.unet_replace_modules, 
            step,
            save_path,
            flag
        )
        save_lora(
            model.text_encoder, 
            FILE_BASENAMES[1], 
            self.use_text_lora, 
            self.text_encoder_replace_modules, 
            step, 
            save_path,
            flag
        )

        # train_patch_pipe(model, self.use_unet_lora, self.use_text_lora)

    def save_lora_weights(self, model: None, save_path: str ='',step: str = '', flag=None):
        save_path = f"{save_path}/lora"
        os.makedirs(save_path, exist_ok=True)

        if self.is_cloneofsimo_lora():
            if any([self.save_for_webui, self.only_for_webui]):
                warnings.warn(
                    """
                    You have 'save_for_webui' enabled, but are using cloneofsimo's LoRA implemention.
                    Only 'stable_lora' is supported for saving to a compatible webui file.
                    """
                )
            self.save_cloneofsimo_lora(model, save_path, step, flag)