Spaces:
Runtime error
Runtime error
File size: 11,693 Bytes
7d421db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import argparse
import os
import platform
import re
import warnings
from typing import Optional
import torch
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from einops import rearrange
from torch import Tensor
from torch.nn.functional import interpolate
from tqdm import trange
import random
from MotionDirector_train import export_to_video, handle_memory_attention, load_primary_models, unet_and_text_g_c, freeze_models
from utils.lora_handler import LoraHandler
from utils.ddim_utils import ddim_inversion
import imageio
def initialize_pipeline(
model: str,
device: str = "cuda",
xformers: bool = False,
sdp: bool = False,
lora_path: str = "",
lora_rank: int = 64,
lora_scale: float = 1.0,
):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
# Freeze any necessary models
freeze_models([vae, text_encoder, unet])
# Enable xformers if available
handle_memory_attention(xformers, sdp, unet)
lora_manager_temporal = LoraHandler(
version="cloneofsimo",
use_unet_lora=True,
use_text_lora=False,
save_for_webui=False,
only_for_webui=False,
unet_replace_modules=["TransformerTemporalModel"],
text_encoder_replace_modules=None,
lora_bias=None
)
unet_lora_params, unet_negation = lora_manager_temporal.add_lora_to_model(
True, unet, lora_manager_temporal.unet_replace_modules, 0, lora_path, r=lora_rank, scale=lora_scale)
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path=model,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.half),
vae=vae.to(device=device, dtype=torch.half),
unet=unet.to(device=device, dtype=torch.half),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe
def inverse_video(pipe, latents, num_steps):
ddim_inv_scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
ddim_inv_scheduler.set_timesteps(num_steps)
ddim_inv_latent = ddim_inversion(
pipe, ddim_inv_scheduler, video_latent=latents.to(pipe.device),
num_inv_steps=num_steps, prompt="")[-1]
return ddim_inv_latent
def prepare_input_latents(
pipe: TextToVideoSDPipeline,
batch_size: int,
num_frames: int,
height: int,
width: int,
latents_path:str,
noise_prior: float
):
# initialize with random gaussian noise
scale = pipe.vae_scale_factor
shape = (batch_size, pipe.unet.config.in_channels, num_frames, height // scale, width // scale)
if noise_prior > 0.:
cached_latents = torch.load(latents_path)
if 'inversion_noise' not in cached_latents:
latents = inverse_video(pipe, cached_latents['latents'].unsqueeze(0), 50).squeeze(0)
else:
latents = torch.load(latents_path)['inversion_noise'].unsqueeze(0)
if latents.shape[0] != batch_size:
latents = latents.repeat(batch_size, 1, 1, 1, 1)
if latents.shape != shape:
latents = interpolate(rearrange(latents, "b c f h w -> (b f) c h w", b=batch_size), (height // scale, width // scale), mode='bilinear')
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=batch_size)
noise = torch.randn_like(latents, dtype=torch.half)
latents = (noise_prior) ** 0.5 * latents + (1 - noise_prior) ** 0.5 * noise
else:
latents = torch.randn(shape, dtype=torch.half)
return latents
def encode(pipe: TextToVideoSDPipeline, pixels: Tensor, batch_size: int = 8):
nf = pixels.shape[2]
pixels = rearrange(pixels, "b c f h w -> (b f) c h w")
latents = []
for idx in trange(
0, pixels.shape[0], batch_size, desc="Encoding to latents...", unit_scale=batch_size, unit="frame"
):
pixels_batch = pixels[idx : idx + batch_size].to(pipe.device, dtype=torch.half)
latents_batch = pipe.vae.encode(pixels_batch).latent_dist.sample()
latents_batch = latents_batch.mul(pipe.vae.config.scaling_factor).cpu()
latents.append(latents_batch)
latents = torch.cat(latents)
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=nf)
return latents
@torch.inference_mode()
def inference(
model: str,
prompt: str,
negative_prompt: Optional[str] = None,
width: int = 256,
height: int = 256,
num_frames: int = 24,
num_steps: int = 50,
guidance_scale: float = 15,
device: str = "cuda",
xformers: bool = False,
sdp: bool = False,
lora_path: str = "",
lora_rank: int = 64,
lora_scale: float = 1.0,
seed: Optional[int] = None,
latents_path: str="",
noise_prior: float = 0.,
repeat_num: int = 1,
):
with torch.autocast(device, dtype=torch.half):
# prepare models
pipe = initialize_pipeline(model, device, xformers, sdp, lora_path, lora_rank, lora_scale)
for i in range(repeat_num):
if seed is not None:
random_seed = seed
torch.manual_seed(seed)
else:
random_seed = random.randint(100, 10000000)
torch.manual_seed(random_seed)
# prepare input latents
init_latents = prepare_input_latents(
pipe=pipe,
batch_size=len(prompt),
num_frames=num_frames,
height=height,
width=width,
latents_path=latents_path,
noise_prior=noise_prior
)
video_frames = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
latents=init_latents
).frames
# =========================================
# ========= write outputs to file =========
# =========================================
os.makedirs(args.output_dir, exist_ok=True)
# save to mp4
export_to_video(video_frames, f"{out_name}_{random_seed}.mp4", args.fps)
# # save to gif
file_name = f"{out_name}_{random_seed}.gif"
imageio.mimsave(file_name, video_frames, 'GIF', duration=1000 * 1 / args.fps, loop=0)
return video_frames
if __name__ == "__main__":
import decord
decord.bridge.set_bridge("torch")
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default='/Users/rui/data/models/zeroscope_v2_576w/',
help="HuggingFace repository or path to model checkpoint directory")
parser.add_argument("-p", "--prompt", type=str, default=None, help="Text prompt to condition on")
parser.add_argument("-n", "--negative-prompt", type=str, default=None, help="Text prompt to condition against")
parser.add_argument("-o", "--output_dir", type=str, default="./outputs/inference", help="Directory to save output video to")
parser.add_argument("-B", "--batch-size", type=int, default=1, help="Batch size for inference")
parser.add_argument("-W", "--width", type=int, default=384, help="Width of output video")
parser.add_argument("-H", "--height", type=int, default=384, help="Height of output video")
parser.add_argument("-T", "--num-frames", type=int, default=16, help="Total number of frames to generate")
parser.add_argument("-s", "--num-steps", type=int, default=30, help="Number of diffusion steps to run per frame.")
parser.add_argument("-g", "--guidance-scale", type=float, default=12, help="Scale for guidance loss (higher values = more guidance, but possibly more artifacts).")
parser.add_argument("-f", "--fps", type=int, default=8, help="FPS of output video")
parser.add_argument("-d", "--device", type=str, default="cuda", help="Device to run inference on (defaults to cuda).")
parser.add_argument("-x", "--xformers", action="store_true", help="Use XFormers attnetion, a memory-efficient attention implementation (requires `pip install xformers`).")
parser.add_argument("-S", "--sdp", action="store_true", help="Use SDP attention, PyTorch's built-in memory-efficient attention implementation.")
parser.add_argument("-cf", "--checkpoint_folder", type=str, default=None, help="Path to Low Rank Adaptation checkpoint file (defaults to empty string, which uses no LoRA).")
parser.add_argument("-lr", "--lora_rank", type=int, default=32, help="Size of the LoRA checkpoint's projection matrix (defaults to 32).")
parser.add_argument("-ls", "--lora_scale", type=float, default=1.0, help="Scale of LoRAs.")
parser.add_argument("-r", "--seed", type=int, default=None, help="Random seed to make generations reproducible.")
parser.add_argument("-np", "--noise_prior", type=float, default=0., help="Random seed to make generations reproducible.")
parser.add_argument("-ci", "--checkpoint_index", type=int, default=None,
help="Random seed to make generations reproducible.")
parser.add_argument("-rn", "--repeat_num", type=int, default=None,
help="Random seed to make generations reproducible.")
args = parser.parse_args()
# fmt: on
# =========================================
# ====== validate and prepare inputs ======
# =========================================
# args.prompt = ["A firefighter standing in front of a burning forest captured with a dolly zoom.",
# "A spaceman standing on the moon with earth behind him captured with a dolly zoom."]
args.prompt = "A person is riding a bicycle past the Eiffel Tower."
args.checkpoint_folder = './outputs/train/train_2023-12-02T11-45-22/'
args.checkpoint_index = 500
args.noise_prior = 0.
args.repeat_num = 10
out_name = f"{args.output_dir}/"
prompt = re.sub(r'[<>:"/\\|?*\x00-\x1F]', "_", args.prompt) if platform.system() == "Windows" else args.prompt
out_name += f"{prompt}".replace(' ','_').replace(',', '').replace('.', '')
args.prompt = [prompt] * args.batch_size
if args.negative_prompt is not None:
args.negative_prompt = [args.negative_prompt] * args.batch_size
# =========================================
# ============= sample videos =============
# =========================================
lora_path = f"{args.checkpoint_folder}/checkpoint-{args.checkpoint_index}/temporal/lora"
latents_folder = f"{args.checkpoint_folder}/cached_latents"
latents_path = f"{latents_folder}/{random.choice(os.listdir(latents_folder))}"
# if args.seed is None:
# args.seed = random.randint(100, 10000000)
assert os.path.exists(lora_path)
video_frames = inference(
model=args.model,
prompt=args.prompt,
negative_prompt=args.negative_prompt,
width=args.width,
height=args.height,
num_frames=args.num_frames,
num_steps=args.num_steps,
guidance_scale=args.guidance_scale,
device=args.device,
xformers=args.xformers,
sdp=args.sdp,
lora_path=lora_path,
lora_rank=args.lora_rank,
lora_scale = args.lora_scale,
seed=args.seed,
latents_path=latents_path,
noise_prior=args.noise_prior,
repeat_num=args.repeat_num
)
|