File size: 3,003 Bytes
5b1fbd1
 
 
 
 
 
 
f1a7843
5b1fbd1
 
 
 
d7af055
5b1fbd1
 
d7af055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b1fbd1
 
 
d7af055
 
 
 
 
5b1fbd1
d7af055
 
 
 
 
 
 
 
 
 
5b1fbd1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## [ChatGPT Prompt Engineering for Developers](https://learn.deeplearning.ai/chatgpt-prompt-eng/)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from auth import API_KEY\n",
    "import openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai.api_key = API_KEY"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_completion(prompt, model='gpt-3.5-turbo'):\n",
    "    messages = [{'role':'user', 'content': prompt}]\n",
    "    response = openai.ChatCompletion.create(\n",
    "        model=model,\n",
    "        messages = messages,\n",
    "        temperature = 0, # this is the degree of randomness of the model's output\n",
    "    )\n",
    "    return response.choices[0].message['content']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = f\"\"\"\n",
    "You should express what you want a model to do by \\ \n",
    "providing instructions that are as clear and \\ \n",
    "specific as you can possibly make them. \\ \n",
    "This will guide the model towards the desired output, \\ \n",
    "and reduce the chances of receiving irrelevant \\ \n",
    "or incorrect responses. Don't confuse writing a \\ \n",
    "clear prompt with writing a short prompt. \\ \n",
    "In many cases, longer prompts provide more clarity \\ \n",
    "and context for the model, which can lead to \\ \n",
    "more detailed and relevant outputs.\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompt = f\"\"\"\n",
    "Summarize the text delimited by triple backticks \\ \n",
    "into a single sentence.\n",
    "```{text}```\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clear and specific instructions should be provided to guide a model towards the desired output, and longer prompts can provide more clarity and context for the model, leading to more detailed and relevant outputs.\n"
     ]
    }
   ],
   "source": [
    "response = get_completion(prompt)\n",
    "print(response)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}