File size: 1,475 Bytes
b2fbe3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Import the necessary libraries
from transformers import pipeline

# Initialize the text classification model with a pre-trained model
model_text_emotion = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")

# Initialize the audio classification model with a pre-trained SER model
model_speech_emotion = pipeline("audio-classification", model="aherzberg/ser_model_fixed_label")

# Initialize the automatic speech recognition model with a pre-trained model that is capable of converting speech to text
model_voice2text = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en")

# A function that uses the initialized text classification model to predict the emotion of a given text input
def infere_text_emotion(text):
    return model_text_emotion(text)[0]["label"].capitalize()

# A function that uses the initialized audio classification model to predict the emotion of a given speech input
def infere_speech_emotion(text):
    # Dict that maps the speech model emotions with the text's ones
    emotions_dict = {"angry": "Anger", "disgust": "Disgust", "fear": "Fear", "happy": "Joy", "neutral": "Neutral", "sad": "Sadness"}
    inference = model_speech_emotion(text)[0]["label"]
    return emotions_dict[inference]

# A function that uses the initialized automatic speech recognition model to convert speech (as an audio file) to text
def infere_voice2text(audio_file):
    return model_voice2text(audio_file)["text"]