Spaces:
Runtime error
Runtime error
File size: 6,827 Bytes
2e0f012 2235ebb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import gradio as gr
import openai
import os
import json
from PIL import Image, ImageDraw
import io
import requests
openai.organization = os.getenv("API_ORG")
openai.api_key = os.getenv("API_KEY")
app_password = os.getenv("APP_PASSWORD")
app_username = os.getenv("APP_USERNAME")
canvas_width = 500
canvas_height = 400
html = f"""
<head>
<style>
#selectRect {{
position: absolute;
border: 1px dashed red;
background-color: rgba(255, 0, 0, 0.3);
}}
</style>
</head>
<body>
<canvas id="canvas-root", width="{canvas_width}", height="{canvas_height}"></canvas>
<div id="selectRect"></div>
</body>
"""
scripts = """
async () => {
let isSelecting = false;
let startX, startY, endX, endY;
const canvas = document.getElementById('canvas-root');
const ctx = canvas.getContext('2d');
const canvasRect = canvas.getBoundingClientRect();
const selectRect = document.getElementById('selectRect');
const coordinatesElement = document.querySelector('#rectangle textarea');
function handleMouseDown(event) {
startX = event.clientX - canvasRect.left;
startY = event.clientY - canvasRect.top;
if (startX >= 0 && startY >= 0 && startX <= canvasRect.width && startY <= canvasRect.height) {
isSelecting = true;
}
}
function handleMouseMove(event) {
if (isSelecting) {
endX = Math.min(event.clientX - canvasRect.left, canvasRect.width);
endY = Math.min(event.clientY - canvasRect.top, canvasRect.height);
endX = Math.max(0, endX);
endY = Math.max(0, endY);
const left = Math.min(startX, endX);
const top = Math.min(startY, endY);
const width = Math.abs(endX - startX);
const height = Math.abs(endY - startY);
selectRect.style.left = left + 'px';
selectRect.style.top = top + 'px';
selectRect.style.width = width + 'px';
selectRect.style.height = height + 'px';
coordinatesElement.value = `{"left": ${left}, "top": ${top}, "width": ${width}, "height": ${height}}`;
coordinatesElement.dispatchEvent(new CustomEvent("input"))
}
}
function handleMouseUp() {
isSelecting = false;
}
document.addEventListener('mousedown', handleMouseDown);
document.addEventListener('mousemove', handleMouseMove);
document.addEventListener('mouseup', handleMouseUp);
}
"""
image_change = """
async () => {
const canvas = document.getElementById('canvas-root');
const ctx= canvas.getContext('2d');
const canvasRect = canvas.getBoundingClientRect();
const selectRect = document.getElementById('selectRect');
selectRect.style.left = 0;
selectRect.style.top = 0;
selectRect.style.width = 0;
selectRect.style.height = 0;
ctx.clearRect(0, 0, canvasRect.width, canvasRect.height);
var img = document.querySelector('#input_image img');
img.onload = function(){
if ((img.naturalWidth / canvasRect.width) > (img.naturalHeight / canvasRect.height)) {
width = canvasRect.width;
height = img.naturalHeight * (width / img.naturalWidth);
} else {
height = canvasRect.height;
width = img.naturalWidth * (height / img.naturalHeight);
}
ctx.drawImage(img, 0, 0, width, height);
}
}
"""
def pil_to_bytes(pil_image, format='PNG'):
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format=format)
return image_bytes.getvalue()
def expand2square(image, background_color):
width, height = image.size
longest = max(width, height)
result = Image.new(image.mode, (longest, longest), background_color)
result.paste(image, (0, 0))
return result.resize((2048, 2048))
def gen_mask(image, left, top, right, bottom):
mask = Image.new("RGBA", image.size, (0, 0, 0, 255))
width = image.size[0]
height = image.size[1]
draw = ImageDraw.Draw(mask)
draw.rectangle(
[(left*width, top*height), (right*width, bottom*height)], fill=(255, 255, 255, 0)
)
return mask
def create_edit(image, rect, prompt):
rect = json.loads(rect)
image.putalpha(alpha=255)
square_image = expand2square(image, "black")
left, top, width, height = rect["left"], rect["top"], rect["width"], rect["height"]
left, top, right, bottom = left / canvas_width, top / canvas_height, (left + width) / canvas_width, (top + height) / canvas_height
response = openai.Image.create_edit(
image=pil_to_bytes(square_image),
mask=pil_to_bytes(gen_mask(square_image, left, top, right, bottom)),
prompt=prompt,
n=1,
size="512x512"
)
edited_image_url = response['data'][0]['url']
edited_image = requests.get(edited_image_url)
edited_image = Image.open(io.BytesIO(edited_image.content))
raw_width, raw_height = image.size
raw_longest = max(raw_width, raw_height)
crop_width = raw_width * edited_image.size[0] / raw_longest
crop_height = raw_height * edited_image.size[1] / raw_longest
croped_edited_image = edited_image.crop((0,0,crop_width, crop_height))
return croped_edited_image
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
with gr.Column():
prompt_text = gr.Textbox(label="Prompt")
prompt_examples = gr.Examples(
examples=[
"White plate.",
"A cherry on top of the pasta.",
"Curry.",
],
inputs=[prompt_text],
outputs=None,
)
in_image = gr.Image(label="Input", elem_id="input_image", type="pil")
image_examples = gr.Examples(
examples=[
"./001.png",
"./002.png",
"./003.png",
],
inputs=[in_image],
outputs=None,
)
out_image = gr.Image(label="Output")
with gr.Column():
gr.Markdown(
"""
# Edit領域の指定
ドラッグで編集対象のマスクの領域を指定してください。
""")
input_mic = gr.HTML(html)
btn = gr.Button(value="Image Edit")
rect_text = gr.Textbox(elem_id="rectangle", visible=False)
in_image.change(None, inputs=None, outputs=None, _js=image_change)
btn.click(create_edit, inputs=[in_image, rect_text, prompt_text], outputs=[out_image])
demo.load(_js=scripts)
demo.launch(share=False, auth=(app_username, app_password))
|