File size: 23,614 Bytes
7e2a2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import copy
import clip
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from enum import Enum
from PIL import Image
from torch import autograd
from .base_model import BaseModel
from models.modules import networks
from models.modules.stylegan2.model import Generator, Discriminator, StyledConv, ToRGB, EqualLinear, ResBlock, ConvLayer, PixelNorm
from models.modules.stylegan2.op import conv2d_gradfix
from models.modules.stylegan2.non_leaking import augment
from models.modules.vit.losses import LossG


class TrainingPhase(Enum):
    ENCODER = 1
    BASE_MODEL = 2
    CLIP_MAPPING = 3
    FEW_SHOT = 4


class CLIPFeats2Wplus(nn.Module):

    def __init__(self, n_tokens=16, embedding_dim=512):
        super().__init__()

        self.position_embedding = nn.Parameter(embedding_dim ** -0.5 * torch.randn(n_tokens, embedding_dim))
        self.transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=8, norm_first=True), num_layers=4)

    def forward(self, x):
        x_in = x.view(x.shape[0], 1, x.shape[1]) + self.position_embedding
        return F.leaky_relu(self.transformer(x_in.permute(1, 0, 2)), negative_slope=0.2)


class Stylizer(nn.Module):

    def __init__(self, ngf=64, phase=TrainingPhase.ENCODER, model_weights=None):
        super(Stylizer, self).__init__()

        # encoder
        self.encoder = nn.Sequential(
            ConvLayer(3, ngf, 3),          # 512
            ResBlock(ngf * 1, ngf * 1),    # 256
            ResBlock(ngf * 1, ngf * 2),    # 128
            ResBlock(ngf * 2, ngf * 4),    # 64
            ResBlock(ngf * 4, ngf * 8),    # 32
            ConvLayer(ngf * 8, ngf * 8, 3) # 32
        )

        # mapping network
        self.mapping_z = nn.Sequential(*([ PixelNorm() ] + [ EqualLinear(512, 512, activation='fused_lrelu', lr_mul=0.01) for _ in range(8) ]))

        # style-based decoder
        channels = {
            32 : ngf * 8,
            64 : ngf * 8,
            128: ngf * 4,
            256: ngf * 2,
            512: ngf * 1
        }
        self.decoder0 = StyledConv(channels[32], channels[32], 3, 512)
        self.to_rgb0 = ToRGB(channels[32], 512, upsample=False)
        for i in range(4):
            ichan = channels[2 ** (i + 5)]
            ochan = channels[2 ** (i + 6)]
            setattr(self, f'decoder{i + 1}a', StyledConv(ichan, ochan, 3, 512, upsample=True))
            setattr(self, f'decoder{i + 1}b', StyledConv(ochan, ochan, 3, 512))
            setattr(self, f'to_rgb{i + 1}', ToRGB(ochan, 512))
        self.n_latent = 10

        # random style for testing
        self.test_z = torch.randn(1, 512)

        # load pretrained model weights
        if phase == TrainingPhase.ENCODER:
            # load pretrained stylegan2 and freeze these params
            for param in self.mapping_z.parameters():
                param.requires_grad = False
            for i in range(4):
                for key in [f'decoder{i + 1}a', f'decoder{i + 1}b', f'to_rgb{i + 1}']:
                    for param in getattr(self, key).parameters():
                        param.requires_grad = False
            self.load_state_dict(self._convert_stylegan2_dict(model_weights), strict=False)
        elif phase == TrainingPhase.BASE_MODEL:
            # load pretrained encoder and stylegan2 decoder
            self.load_state_dict(model_weights)
        elif phase == TrainingPhase.CLIP_MAPPING:
            self.clip_mapper = CLIPFeats2Wplus(n_tokens=self.n_latent)
            # load pretraned base model and freeze all params except clip mapper
            self.load_state_dict(model_weights, strict=False)
            params = dict(self.named_parameters())
            for k in params.keys():
                if 'clip_mapper' in k:
                    print(f'{k} not freezed !')
                    continue
                params[k].requires_grad = False
        elif phase == TrainingPhase.FEW_SHOT:
            self.clip_mapper = CLIPFeats2Wplus(n_tokens=self.n_latent)
            # load pretrained base model and freeze encoder & mapping
            self.load_state_dict(model_weights)
            self.encoder.requires_grad_(False)
            self.mapping_z.requires_grad_(False)
            self.clip_mapper.requires_grad_(False)

    def _convert_stylegan2_dict(self, src):
        res = {}
        for k, v in src.items():
            if k.startswith('style.'):
                res[k.replace('style.', 'mapping_z.')] = v
            else:
                name, idx = k.split('.')[:2]
                if name == 'convs':
                    idx = int(idx)
                    if idx >= 6:
                        res[k.replace(f'{name}.{idx}.', f'decoder{idx // 2 - 2}{chr(97 + idx % 2)}.')] = v
                elif name == 'to_rgbs':
                    idx = int(idx)
                    if idx >= 3:
                        res[k.replace(f'{name}.{idx}.', f'to_rgb{idx - 2}.')] = v
        return res

    def get_styles(self, x, **kwargs):
        if len(kwargs) == 0:
            return self.mapping_z(self.test_z.to(x.device).repeat(x.shape[0], 1)).repeat(self.n_latent, 1, 1)
        elif 'mixing' in kwargs and kwargs['mixing']:
            w0 = self.mapping_z(torch.randn(x.shape[0], 512, device=x.device))
            w1 = self.mapping_z(torch.randn(x.shape[0], 512, device=x.device))
            inject_index = random.randint(1, self.n_latent - 1)
            return torch.cat([
                w0.repeat(inject_index, 1, 1),
                w1.repeat(self.n_latent - inject_index, 1, 1)
            ])
        elif 'z' in kwargs:
            return self.mapping_z(kwargs['z']).repeat(self.n_latent, 1, 1)
        elif 'clip_feats' in kwargs:
            return self.clip_mapper(kwargs['clip_feats'])
        else:
            z = torch.randn(x.shape[0], 512, device=x.device)
            return self.mapping_z(z).repeat(self.n_latent, 1, 1)

    def forward(self, x, **kwargs):
        # encode
        feat = self.encoder(x)

        # get style code
        styles = self.get_styles(x, **kwargs)

        # style-based generate
        feat = self.decoder0(feat, styles[0])
        out = self.to_rgb0(feat, styles[1])
        for i in range(4):
            feat = getattr(self, f'decoder{i + 1}a')(feat, styles[i * 2 + 1])
            feat = getattr(self, f'decoder{i + 1}b')(feat, styles[i * 2 + 2])
            out = getattr(self, f'to_rgb{i + 1}')(feat, styles[i * 2 + 3], out)

        return F.hardtanh(out)


class StyleBasedPix2PixIIModel(BaseModel):
    """
    This class implements the Style-Based Pix2Pix model version II.
    """

    def __init__(self, config, DDP_device=None):
        BaseModel.__init__(self, config, DDP_device=DDP_device)

        self.d_reg_freq = 16
        self.lambda_r1 = 10
        self.step = 0
        self.phase = TrainingPhase(config['training']['phase'])

        # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
        if self.phase == TrainingPhase.ENCODER:
            self.loss_names = ['G', 'G_L1', 'G_Feat']
        elif self.phase == TrainingPhase.BASE_MODEL:
            self.loss_names = ['G', 'G_ST', 'G_GAN', 'D']
        elif self.phase == TrainingPhase.CLIP_MAPPING:
            self.loss_names = ['G', 'G_L1', 'G_Feat']
        elif self.phase == TrainingPhase.FEW_SHOT:
            self.loss_names = ['G', 'G_ST', 'G_CLIP', 'G_PROJ']

        # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
        self.visual_names = ['real_A', 'real_B', 'fake_B']

        # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
        if self.isTrain:
            self.model_names = ['G', 'G_ema', 'D']
        else:  # during test time, only load Gs
            self.model_names = ['G_ema']

        self.data_aug_prob = config['training']['data_aug_prob']

        min_feats_size = tuple(config['model']['min_feats_size'])

        def __init_net(model):
            return networks.init_net(model, init_type='none', init_gain=0.0, gpu_ids=self.gpu_ids,
                DDP_device=self.DDP_device, find_unused_parameters=config['training']['find_unused_parameters'])

        if self.phase == TrainingPhase.ENCODER: # train a encoder for stylegan2
            # load and init pretrained stylegan2
            model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')
            self.stylegan2 = Generator(512, 512, 8)
            self.stylegan2.load_state_dict(model_dict['g'])
            self.stylegan2 = __init_net(self.stylegan2)
            self.stylegan2.eval()
            self.stylegan2.requires_grad_(False)

            # init netG
            self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['g'])
            self.netG = __init_net(self.netG)

            # init netD
            self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
            self.netD.load_state_dict(model_dict['d'])
            self.netD = __init_net(self.netD)
            self.netD.eval()
            self.netD.requires_grad_(False)

        elif self.phase == TrainingPhase.BASE_MODEL: # finetune the whole model
            model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')

            # init netG
            self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['G_ema_model'])
            self.netG = __init_net(self.netG)

            # init netD
            self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
            self.netD.load_state_dict(model_dict['D_model'])
            self.netD = __init_net(self.netD)

        elif self.phase == TrainingPhase.CLIP_MAPPING or self.phase == TrainingPhase.FEW_SHOT: # train the clip mapper or zero/one shot finetune
            # init CLIP
            self.clip_model, self.pil_to_tensor = clip.load('ViT-B/32', device=self.device)
            self.clip_model.eval()
            self.clip_model.requires_grad_(False)

            model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')

            # init netG
            self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['G_ema_model'])
            self.netG = __init_net(self.netG)

            # init netD
            self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
            self.netD.load_state_dict(model_dict['D_model'])
            self.netD = __init_net(self.netD)
            self.netD.eval()
            self.netD.requires_grad_(False)

        if self.phase == TrainingPhase.FEW_SHOT: # set hook to get clip vit tokens
            def clip_vit_hook(model, feat_in, feat_out):
                self.clip_vit_tokens = feat_out[1:].permute(1, 0, 2).float() # remove cls token
            self.clip_model.visual.transformer.resblocks[3].register_forward_hook(clip_vit_hook)

        # create netG ema
        self.netG_ema = copy.deepcopy(self.netG)
        self.netG_ema.eval()
        self.netG_ema.requires_grad_(False)
        self.ema(self.netG_ema, self.netG, 0.0)

        # CLIP mean & std
        self.clip_mean = torch.tensor((0.48145466, 0.4578275, 0.40821073), device=self.device).view(1, 3, 1, 1)
        self.clip_std = torch.tensor((0.26862954, 0.26130258, 0.27577711), device=self.device).view(1, 3, 1, 1)

        if self.isTrain:
            # define loss functions
            if self.phase == TrainingPhase.ENCODER:
                self.criterionL1 = nn.L1Loss()
            elif self.phase == TrainingPhase.BASE_MODEL:
                self.criterionStyleGAN = networks.GANLoss('wgangp').to(self.device)
                self.vitLoss = LossG(self.device)
            elif self.phase == TrainingPhase.CLIP_MAPPING:
                self.criterionL1 = nn.L1Loss()
            elif self.phase == TrainingPhase.FEW_SHOT:
                self.criterionL1 = nn.L1Loss()
                self.vitLoss = LossG(self.device)
                self.cosineSim = nn.CosineSimilarity(dim=1)

            # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
            self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=config['training']['lr'], betas=(config['training']['beta1'], 0.999))
            d_reg_ratio = self.d_reg_freq / (self.d_reg_freq + 1)
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=config['training']['lr'] * d_reg_ratio, betas=(config['training']['beta1'] ** d_reg_ratio, 0.999 ** d_reg_ratio))
            self.optimizers.append(self.optimizer_G)
            self.optimizers.append(self.optimizer_D)

    def ema(self, tgt, src, decay=0.999):
        param_tgt = dict(tgt.named_parameters())
        param_src = dict(src.named_parameters())
        for key in param_tgt.keys():
            param_tgt[key].data.mul_(decay).add_(param_src[key].data, alpha=1.0 - decay)

    def preprocess_clip_image(self, x, size):
        x = x * 0.5 + 0.5
        x = F.interpolate(x, (size, size), mode='bilinear', antialias=True, align_corners=False)
        return (x - self.clip_mean) / self.clip_std

    def set_input(self, input):
        if self.phase == TrainingPhase.ENCODER:
            # sample via stylegan2
            self.z = torch.randn(self.config['dataset']['batch_size'], 512, device=self.device)
            with torch.no_grad():
                self.real_A = F.hardtanh(self.stylegan2.forward([self.z])[0])
                self.real_B = self.real_A.clone()
        elif self.phase == TrainingPhase.BASE_MODEL:
            if self.config['common']['phase'] == 'test':
                self.real_A = input['test_A'].to(self.device)
                self.real_B = input['test_B'].to(self.device)
                self.image_paths = input['test_A_path']
            else:
                self.real_A = input['unpaired_A'].to(self.device)
                self.real_B = input['unpaired_B'].to(self.device)
                self.image_paths = input['unpaired_A_path']
        elif self.phase == TrainingPhase.CLIP_MAPPING:
            self.real_A = input['unpaired_A'].to(self.device)
            with torch.no_grad():
                self.real_B = self.netG_ema(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
                self.clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.real_B, self.clip_model.visual.input_resolution))
                self.clip_feats /= self.clip_feats.norm(dim=1, keepdim=True)
        elif self.phase == TrainingPhase.FEW_SHOT:
            self.real_A = input['unpaired_A'].to(self.device)
            self.real_B = self.real_A
            if not hasattr(self, 'clip_feats'):
                with torch.no_grad():
                    if os.path.isfile(self.config['training']['image_prompt']):
                        image = self.pil_to_tensor(Image.open(self.config['training']['image_prompt'])).unsqueeze(0).to(self.device)
                        self.clip_feats = self.clip_model.encode_image(image)
                        ref_tokens = self.clip_vit_tokens
                        ref_tokens /= ref_tokens.norm(dim=2, keepdim=True)
                        D = ref_tokens.shape[2]
                        ref_tokens = ref_tokens.reshape(-1, D).permute(1, 0)
                        U, _, _ = torch.linalg.svd(ref_tokens, full_matrices=False)
                        self.UUT = U @ U.permute(1, 0)
                        self.use_image_prompt = True
                    else:
                        text = clip.tokenize(self.config['training']['text_prompt']).to(self.device)
                        self.clip_feats = self.clip_model.encode_text(text)
                        self.use_image_prompt = False
                        # get source text prompt feature
                        text = clip.tokenize(self.config['training']['src_text_prompt']).to(self.device)
                        self.src_clip_feats = self.clip_model.encode_text(text)
                        self.src_clip_feats /= self.src_clip_feats.norm(dim=1, keepdim=True)
                        self.src_clip_feats = self.src_clip_feats.repeat(self.config['dataset']['batch_size'], 1)
                    self.clip_feats /= self.clip_feats.norm(dim=1, keepdim=True)
                    self.clip_feats = self.clip_feats.repeat(self.config['dataset']['batch_size'], 1)
            # get direction in clip space
            with torch.no_grad():
                self.real_A_clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.real_A, self.clip_model.visual.input_resolution))
                self.real_A_clip_feats /= self.real_A_clip_feats.norm(dim=1, keepdim=True)
                if self.use_image_prompt:
                    self.src_clip_feats = self.real_A_clip_feats.mean(dim=0, keepdim=True).repeat(self.config['dataset']['batch_size'], 1)
                self.clip_feats_dir = self.clip_feats - self.src_clip_feats

    def forward(self, use_ema=False):
        if self.phase == TrainingPhase.ENCODER:
            if use_ema:
                self.fake_B = self.netG_ema(self.real_A, z=self.z)
            else:
                self.fake_B = self.netG(self.real_A, z=self.z)
        elif self.phase == TrainingPhase.BASE_MODEL:
            if not self.isTrain:
                self.fake_B = self.netG_ema(self.real_A, mixing=False)
            elif use_ema:
                self.fake_B = self.netG_ema(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
            else:
                self.fake_B = self.netG(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
        elif self.phase == TrainingPhase.CLIP_MAPPING or self.phase == TrainingPhase.FEW_SHOT:
            if use_ema:
                self.fake_B = self.netG_ema(self.real_A, clip_feats=self.clip_feats)
            else:
                self.fake_B = self.netG(self.real_A, clip_feats=self.clip_feats)

    def backward_D_r1(self):
        self.real_B.requires_grad = True
        if self.data_aug_prob == 0.0:
            real_aug = self.real_B
        else:
            real_aug, _ = augment(self.real_B, self.data_aug_prob)
        real_pred = self.netD(real_aug)
        with conv2d_gradfix.no_weight_gradients():
            grad, = autograd.grad(outputs=real_pred.sum(), inputs=real_aug, create_graph=True)
        r1_loss = grad.pow(2).reshape(grad.shape[0], -1).sum(1).mean()
        (r1_loss * self.lambda_r1 / 2 * self.d_reg_freq + 0 * real_pred[0]).backward()

    def backward_D(self, backward=True):
        if self.data_aug_prob == 0.0:
            loss_fake = self.criterionStyleGAN(self.netD(self.fake_B.detach()), False)
            loss_real = self.criterionStyleGAN(self.netD(self.real_B), True)
        else:
            fake_aug, _ = augment(self.fake_B.detach(), self.data_aug_prob)
            real_aug, _ = augment(self.real_B, self.data_aug_prob)
            loss_fake = self.criterionStyleGAN(self.netD(fake_aug), False)
            loss_real = self.criterionStyleGAN(self.netD(real_aug), True)
        self.loss_D = (loss_fake + loss_real) * 0.5

        if backward:
            self.loss_D.backward()

    def backward_G(self, backward=True):
        self.loss_G = 0

        if self.phase == TrainingPhase.ENCODER or self.phase == TrainingPhase.CLIP_MAPPING:
            self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B)
            with torch.no_grad():
                real_feats = self.netD(self.real_B, rtn_feats=True)
            fake_feats = self.netD(self.fake_B, rtn_feats=True)
            self.loss_G_Feat = sum([ self.criterionL1(fake, real) for fake, real in zip(fake_feats, real_feats) ])

            self.loss_G += self.loss_G_L1 * self.config['training']['lambda_L1']
            self.loss_G += self.loss_G_Feat * self.config['training']['lambda_Feat']

        elif self.phase == TrainingPhase.BASE_MODEL:
            self.loss_G_ST = self.vitLoss.calculate_global_ssim_loss(self.fake_B * 0.5 + 0.5, self.real_A * 0.5 + 0.5)
            if self.data_aug_prob == 0.0:
                self.loss_G_GAN = self.criterionStyleGAN(self.netD(self.fake_B), True)
            else:
                fake_aug, _ = augment(self.fake_B, self.data_aug_prob)
                self.loss_G_GAN = self.criterionStyleGAN(self.netD(fake_aug), True)

            self.loss_G += self.loss_G_ST * self.config['training']['lambda_ST']
            self.loss_G += self.loss_G_GAN * self.config['training']['lambda_GAN']

        elif self.phase == TrainingPhase.FEW_SHOT:
            self.loss_G_ST = self.vitLoss.calculate_global_ssim_loss(self.fake_B * 0.5 + 0.5, self.real_A * 0.5 + 0.5)
            fake_clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.fake_B, self.clip_model.visual.input_resolution))
            fake_clip_feats = fake_clip_feats / fake_clip_feats.norm(dim=1, keepdim=True)
            fake_clip_feats_dir = fake_clip_feats - self.real_A_clip_feats
            self.loss_G_CLIP = (1.0 - self.cosineSim(fake_clip_feats_dir, self.clip_feats_dir)).mean()
            if self.use_image_prompt:
                fake_tokens = self.clip_vit_tokens
                fake_tokens = fake_tokens / fake_tokens.norm(dim=2, keepdim=True)
                D = fake_tokens.shape[2]
                fake_tokens = fake_tokens.reshape(-1, D).permute(1, 0)
                self.loss_G_PROJ = self.criterionL1(self.UUT @ fake_tokens, fake_tokens)
            else:
                self.loss_G_PROJ = 0.0

            self.loss_G += self.loss_G_ST * self.config['training']['lambda_ST']
            self.loss_G += self.loss_G_CLIP * self.config['training']['lambda_CLIP']
            self.loss_G += self.loss_G_PROJ * self.config['training']['lambda_PROJ']

        if backward:
            self.loss_G.backward()

    def optimize_parameters(self):
        # forward
        self.forward()

        if not self.phase == TrainingPhase.BASE_MODEL:
            # only G
            self.optimizer_G.zero_grad()
            self.backward_G()
            self.optimizer_G.step()

            # update G_ema
            self.ema(self.netG_ema, self.netG, decay=self.config['training']['ema'])

        else:
            # G
            self.set_requires_grad([self.netD], False)
            self.optimizer_G.zero_grad()
            self.backward_G()
            self.optimizer_G.step()
            # D
            self.set_requires_grad([self.netD], True)
            self.optimizer_D.zero_grad()
            self.backward_D()
            self.optimizer_D.step()

            # update G_ema
            self.ema(self.netG_ema, self.netG, decay=self.config['training']['ema'])

            # r1 reg
            self.step += 1
            if self.step % self.d_reg_freq == 0:
                self.optimizer_D.zero_grad()
                self.backward_D_r1()
                self.optimizer_D.step()

    def eval_step(self):
        self.forward(use_ema=True)
        self.backward_G(False)
        if self.phase == TrainingPhase.BASE_MODEL:
            self.backward_D(False)
        self.step += 1

    def trace_jit(self, input):
        self.netG = self.netG.module.cpu()
        traced_script_module = torch.jit.trace(self.netG, input)
        dummy_output = self.netG_ema(input)
        dummy_output_traced = traced_script_module(input)
        return traced_script_module, dummy_output, dummy_output_traced