Spaces:
Sleeping
Sleeping
File size: 23,614 Bytes
7e2a2a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import copy
import clip
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from enum import Enum
from PIL import Image
from torch import autograd
from .base_model import BaseModel
from models.modules import networks
from models.modules.stylegan2.model import Generator, Discriminator, StyledConv, ToRGB, EqualLinear, ResBlock, ConvLayer, PixelNorm
from models.modules.stylegan2.op import conv2d_gradfix
from models.modules.stylegan2.non_leaking import augment
from models.modules.vit.losses import LossG
class TrainingPhase(Enum):
ENCODER = 1
BASE_MODEL = 2
CLIP_MAPPING = 3
FEW_SHOT = 4
class CLIPFeats2Wplus(nn.Module):
def __init__(self, n_tokens=16, embedding_dim=512):
super().__init__()
self.position_embedding = nn.Parameter(embedding_dim ** -0.5 * torch.randn(n_tokens, embedding_dim))
self.transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=embedding_dim, nhead=8, norm_first=True), num_layers=4)
def forward(self, x):
x_in = x.view(x.shape[0], 1, x.shape[1]) + self.position_embedding
return F.leaky_relu(self.transformer(x_in.permute(1, 0, 2)), negative_slope=0.2)
class Stylizer(nn.Module):
def __init__(self, ngf=64, phase=TrainingPhase.ENCODER, model_weights=None):
super(Stylizer, self).__init__()
# encoder
self.encoder = nn.Sequential(
ConvLayer(3, ngf, 3), # 512
ResBlock(ngf * 1, ngf * 1), # 256
ResBlock(ngf * 1, ngf * 2), # 128
ResBlock(ngf * 2, ngf * 4), # 64
ResBlock(ngf * 4, ngf * 8), # 32
ConvLayer(ngf * 8, ngf * 8, 3) # 32
)
# mapping network
self.mapping_z = nn.Sequential(*([ PixelNorm() ] + [ EqualLinear(512, 512, activation='fused_lrelu', lr_mul=0.01) for _ in range(8) ]))
# style-based decoder
channels = {
32 : ngf * 8,
64 : ngf * 8,
128: ngf * 4,
256: ngf * 2,
512: ngf * 1
}
self.decoder0 = StyledConv(channels[32], channels[32], 3, 512)
self.to_rgb0 = ToRGB(channels[32], 512, upsample=False)
for i in range(4):
ichan = channels[2 ** (i + 5)]
ochan = channels[2 ** (i + 6)]
setattr(self, f'decoder{i + 1}a', StyledConv(ichan, ochan, 3, 512, upsample=True))
setattr(self, f'decoder{i + 1}b', StyledConv(ochan, ochan, 3, 512))
setattr(self, f'to_rgb{i + 1}', ToRGB(ochan, 512))
self.n_latent = 10
# random style for testing
self.test_z = torch.randn(1, 512)
# load pretrained model weights
if phase == TrainingPhase.ENCODER:
# load pretrained stylegan2 and freeze these params
for param in self.mapping_z.parameters():
param.requires_grad = False
for i in range(4):
for key in [f'decoder{i + 1}a', f'decoder{i + 1}b', f'to_rgb{i + 1}']:
for param in getattr(self, key).parameters():
param.requires_grad = False
self.load_state_dict(self._convert_stylegan2_dict(model_weights), strict=False)
elif phase == TrainingPhase.BASE_MODEL:
# load pretrained encoder and stylegan2 decoder
self.load_state_dict(model_weights)
elif phase == TrainingPhase.CLIP_MAPPING:
self.clip_mapper = CLIPFeats2Wplus(n_tokens=self.n_latent)
# load pretraned base model and freeze all params except clip mapper
self.load_state_dict(model_weights, strict=False)
params = dict(self.named_parameters())
for k in params.keys():
if 'clip_mapper' in k:
print(f'{k} not freezed !')
continue
params[k].requires_grad = False
elif phase == TrainingPhase.FEW_SHOT:
self.clip_mapper = CLIPFeats2Wplus(n_tokens=self.n_latent)
# load pretrained base model and freeze encoder & mapping
self.load_state_dict(model_weights)
self.encoder.requires_grad_(False)
self.mapping_z.requires_grad_(False)
self.clip_mapper.requires_grad_(False)
def _convert_stylegan2_dict(self, src):
res = {}
for k, v in src.items():
if k.startswith('style.'):
res[k.replace('style.', 'mapping_z.')] = v
else:
name, idx = k.split('.')[:2]
if name == 'convs':
idx = int(idx)
if idx >= 6:
res[k.replace(f'{name}.{idx}.', f'decoder{idx // 2 - 2}{chr(97 + idx % 2)}.')] = v
elif name == 'to_rgbs':
idx = int(idx)
if idx >= 3:
res[k.replace(f'{name}.{idx}.', f'to_rgb{idx - 2}.')] = v
return res
def get_styles(self, x, **kwargs):
if len(kwargs) == 0:
return self.mapping_z(self.test_z.to(x.device).repeat(x.shape[0], 1)).repeat(self.n_latent, 1, 1)
elif 'mixing' in kwargs and kwargs['mixing']:
w0 = self.mapping_z(torch.randn(x.shape[0], 512, device=x.device))
w1 = self.mapping_z(torch.randn(x.shape[0], 512, device=x.device))
inject_index = random.randint(1, self.n_latent - 1)
return torch.cat([
w0.repeat(inject_index, 1, 1),
w1.repeat(self.n_latent - inject_index, 1, 1)
])
elif 'z' in kwargs:
return self.mapping_z(kwargs['z']).repeat(self.n_latent, 1, 1)
elif 'clip_feats' in kwargs:
return self.clip_mapper(kwargs['clip_feats'])
else:
z = torch.randn(x.shape[0], 512, device=x.device)
return self.mapping_z(z).repeat(self.n_latent, 1, 1)
def forward(self, x, **kwargs):
# encode
feat = self.encoder(x)
# get style code
styles = self.get_styles(x, **kwargs)
# style-based generate
feat = self.decoder0(feat, styles[0])
out = self.to_rgb0(feat, styles[1])
for i in range(4):
feat = getattr(self, f'decoder{i + 1}a')(feat, styles[i * 2 + 1])
feat = getattr(self, f'decoder{i + 1}b')(feat, styles[i * 2 + 2])
out = getattr(self, f'to_rgb{i + 1}')(feat, styles[i * 2 + 3], out)
return F.hardtanh(out)
class StyleBasedPix2PixIIModel(BaseModel):
"""
This class implements the Style-Based Pix2Pix model version II.
"""
def __init__(self, config, DDP_device=None):
BaseModel.__init__(self, config, DDP_device=DDP_device)
self.d_reg_freq = 16
self.lambda_r1 = 10
self.step = 0
self.phase = TrainingPhase(config['training']['phase'])
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
if self.phase == TrainingPhase.ENCODER:
self.loss_names = ['G', 'G_L1', 'G_Feat']
elif self.phase == TrainingPhase.BASE_MODEL:
self.loss_names = ['G', 'G_ST', 'G_GAN', 'D']
elif self.phase == TrainingPhase.CLIP_MAPPING:
self.loss_names = ['G', 'G_L1', 'G_Feat']
elif self.phase == TrainingPhase.FEW_SHOT:
self.loss_names = ['G', 'G_ST', 'G_CLIP', 'G_PROJ']
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
self.visual_names = ['real_A', 'real_B', 'fake_B']
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>.
if self.isTrain:
self.model_names = ['G', 'G_ema', 'D']
else: # during test time, only load Gs
self.model_names = ['G_ema']
self.data_aug_prob = config['training']['data_aug_prob']
min_feats_size = tuple(config['model']['min_feats_size'])
def __init_net(model):
return networks.init_net(model, init_type='none', init_gain=0.0, gpu_ids=self.gpu_ids,
DDP_device=self.DDP_device, find_unused_parameters=config['training']['find_unused_parameters'])
if self.phase == TrainingPhase.ENCODER: # train a encoder for stylegan2
# load and init pretrained stylegan2
model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')
self.stylegan2 = Generator(512, 512, 8)
self.stylegan2.load_state_dict(model_dict['g'])
self.stylegan2 = __init_net(self.stylegan2)
self.stylegan2.eval()
self.stylegan2.requires_grad_(False)
# init netG
self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['g'])
self.netG = __init_net(self.netG)
# init netD
self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
self.netD.load_state_dict(model_dict['d'])
self.netD = __init_net(self.netD)
self.netD.eval()
self.netD.requires_grad_(False)
elif self.phase == TrainingPhase.BASE_MODEL: # finetune the whole model
model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')
# init netG
self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['G_ema_model'])
self.netG = __init_net(self.netG)
# init netD
self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
self.netD.load_state_dict(model_dict['D_model'])
self.netD = __init_net(self.netD)
elif self.phase == TrainingPhase.CLIP_MAPPING or self.phase == TrainingPhase.FEW_SHOT: # train the clip mapper or zero/one shot finetune
# init CLIP
self.clip_model, self.pil_to_tensor = clip.load('ViT-B/32', device=self.device)
self.clip_model.eval()
self.clip_model.requires_grad_(False)
model_dict = torch.load(config['training']['pretrained_model'], map_location='cpu')
# init netG
self.netG = Stylizer(ngf=config['model']['ngf'], phase=self.phase, model_weights=model_dict['G_ema_model'])
self.netG = __init_net(self.netG)
# init netD
self.netD = Discriminator(min(min_feats_size) * 128, min_feats_size)
self.netD.load_state_dict(model_dict['D_model'])
self.netD = __init_net(self.netD)
self.netD.eval()
self.netD.requires_grad_(False)
if self.phase == TrainingPhase.FEW_SHOT: # set hook to get clip vit tokens
def clip_vit_hook(model, feat_in, feat_out):
self.clip_vit_tokens = feat_out[1:].permute(1, 0, 2).float() # remove cls token
self.clip_model.visual.transformer.resblocks[3].register_forward_hook(clip_vit_hook)
# create netG ema
self.netG_ema = copy.deepcopy(self.netG)
self.netG_ema.eval()
self.netG_ema.requires_grad_(False)
self.ema(self.netG_ema, self.netG, 0.0)
# CLIP mean & std
self.clip_mean = torch.tensor((0.48145466, 0.4578275, 0.40821073), device=self.device).view(1, 3, 1, 1)
self.clip_std = torch.tensor((0.26862954, 0.26130258, 0.27577711), device=self.device).view(1, 3, 1, 1)
if self.isTrain:
# define loss functions
if self.phase == TrainingPhase.ENCODER:
self.criterionL1 = nn.L1Loss()
elif self.phase == TrainingPhase.BASE_MODEL:
self.criterionStyleGAN = networks.GANLoss('wgangp').to(self.device)
self.vitLoss = LossG(self.device)
elif self.phase == TrainingPhase.CLIP_MAPPING:
self.criterionL1 = nn.L1Loss()
elif self.phase == TrainingPhase.FEW_SHOT:
self.criterionL1 = nn.L1Loss()
self.vitLoss = LossG(self.device)
self.cosineSim = nn.CosineSimilarity(dim=1)
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=config['training']['lr'], betas=(config['training']['beta1'], 0.999))
d_reg_ratio = self.d_reg_freq / (self.d_reg_freq + 1)
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=config['training']['lr'] * d_reg_ratio, betas=(config['training']['beta1'] ** d_reg_ratio, 0.999 ** d_reg_ratio))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
def ema(self, tgt, src, decay=0.999):
param_tgt = dict(tgt.named_parameters())
param_src = dict(src.named_parameters())
for key in param_tgt.keys():
param_tgt[key].data.mul_(decay).add_(param_src[key].data, alpha=1.0 - decay)
def preprocess_clip_image(self, x, size):
x = x * 0.5 + 0.5
x = F.interpolate(x, (size, size), mode='bilinear', antialias=True, align_corners=False)
return (x - self.clip_mean) / self.clip_std
def set_input(self, input):
if self.phase == TrainingPhase.ENCODER:
# sample via stylegan2
self.z = torch.randn(self.config['dataset']['batch_size'], 512, device=self.device)
with torch.no_grad():
self.real_A = F.hardtanh(self.stylegan2.forward([self.z])[0])
self.real_B = self.real_A.clone()
elif self.phase == TrainingPhase.BASE_MODEL:
if self.config['common']['phase'] == 'test':
self.real_A = input['test_A'].to(self.device)
self.real_B = input['test_B'].to(self.device)
self.image_paths = input['test_A_path']
else:
self.real_A = input['unpaired_A'].to(self.device)
self.real_B = input['unpaired_B'].to(self.device)
self.image_paths = input['unpaired_A_path']
elif self.phase == TrainingPhase.CLIP_MAPPING:
self.real_A = input['unpaired_A'].to(self.device)
with torch.no_grad():
self.real_B = self.netG_ema(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
self.clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.real_B, self.clip_model.visual.input_resolution))
self.clip_feats /= self.clip_feats.norm(dim=1, keepdim=True)
elif self.phase == TrainingPhase.FEW_SHOT:
self.real_A = input['unpaired_A'].to(self.device)
self.real_B = self.real_A
if not hasattr(self, 'clip_feats'):
with torch.no_grad():
if os.path.isfile(self.config['training']['image_prompt']):
image = self.pil_to_tensor(Image.open(self.config['training']['image_prompt'])).unsqueeze(0).to(self.device)
self.clip_feats = self.clip_model.encode_image(image)
ref_tokens = self.clip_vit_tokens
ref_tokens /= ref_tokens.norm(dim=2, keepdim=True)
D = ref_tokens.shape[2]
ref_tokens = ref_tokens.reshape(-1, D).permute(1, 0)
U, _, _ = torch.linalg.svd(ref_tokens, full_matrices=False)
self.UUT = U @ U.permute(1, 0)
self.use_image_prompt = True
else:
text = clip.tokenize(self.config['training']['text_prompt']).to(self.device)
self.clip_feats = self.clip_model.encode_text(text)
self.use_image_prompt = False
# get source text prompt feature
text = clip.tokenize(self.config['training']['src_text_prompt']).to(self.device)
self.src_clip_feats = self.clip_model.encode_text(text)
self.src_clip_feats /= self.src_clip_feats.norm(dim=1, keepdim=True)
self.src_clip_feats = self.src_clip_feats.repeat(self.config['dataset']['batch_size'], 1)
self.clip_feats /= self.clip_feats.norm(dim=1, keepdim=True)
self.clip_feats = self.clip_feats.repeat(self.config['dataset']['batch_size'], 1)
# get direction in clip space
with torch.no_grad():
self.real_A_clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.real_A, self.clip_model.visual.input_resolution))
self.real_A_clip_feats /= self.real_A_clip_feats.norm(dim=1, keepdim=True)
if self.use_image_prompt:
self.src_clip_feats = self.real_A_clip_feats.mean(dim=0, keepdim=True).repeat(self.config['dataset']['batch_size'], 1)
self.clip_feats_dir = self.clip_feats - self.src_clip_feats
def forward(self, use_ema=False):
if self.phase == TrainingPhase.ENCODER:
if use_ema:
self.fake_B = self.netG_ema(self.real_A, z=self.z)
else:
self.fake_B = self.netG(self.real_A, z=self.z)
elif self.phase == TrainingPhase.BASE_MODEL:
if not self.isTrain:
self.fake_B = self.netG_ema(self.real_A, mixing=False)
elif use_ema:
self.fake_B = self.netG_ema(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
else:
self.fake_B = self.netG(self.real_A, mixing=random.random() < self.config['training']['style_mixing_prob'])
elif self.phase == TrainingPhase.CLIP_MAPPING or self.phase == TrainingPhase.FEW_SHOT:
if use_ema:
self.fake_B = self.netG_ema(self.real_A, clip_feats=self.clip_feats)
else:
self.fake_B = self.netG(self.real_A, clip_feats=self.clip_feats)
def backward_D_r1(self):
self.real_B.requires_grad = True
if self.data_aug_prob == 0.0:
real_aug = self.real_B
else:
real_aug, _ = augment(self.real_B, self.data_aug_prob)
real_pred = self.netD(real_aug)
with conv2d_gradfix.no_weight_gradients():
grad, = autograd.grad(outputs=real_pred.sum(), inputs=real_aug, create_graph=True)
r1_loss = grad.pow(2).reshape(grad.shape[0], -1).sum(1).mean()
(r1_loss * self.lambda_r1 / 2 * self.d_reg_freq + 0 * real_pred[0]).backward()
def backward_D(self, backward=True):
if self.data_aug_prob == 0.0:
loss_fake = self.criterionStyleGAN(self.netD(self.fake_B.detach()), False)
loss_real = self.criterionStyleGAN(self.netD(self.real_B), True)
else:
fake_aug, _ = augment(self.fake_B.detach(), self.data_aug_prob)
real_aug, _ = augment(self.real_B, self.data_aug_prob)
loss_fake = self.criterionStyleGAN(self.netD(fake_aug), False)
loss_real = self.criterionStyleGAN(self.netD(real_aug), True)
self.loss_D = (loss_fake + loss_real) * 0.5
if backward:
self.loss_D.backward()
def backward_G(self, backward=True):
self.loss_G = 0
if self.phase == TrainingPhase.ENCODER or self.phase == TrainingPhase.CLIP_MAPPING:
self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B)
with torch.no_grad():
real_feats = self.netD(self.real_B, rtn_feats=True)
fake_feats = self.netD(self.fake_B, rtn_feats=True)
self.loss_G_Feat = sum([ self.criterionL1(fake, real) for fake, real in zip(fake_feats, real_feats) ])
self.loss_G += self.loss_G_L1 * self.config['training']['lambda_L1']
self.loss_G += self.loss_G_Feat * self.config['training']['lambda_Feat']
elif self.phase == TrainingPhase.BASE_MODEL:
self.loss_G_ST = self.vitLoss.calculate_global_ssim_loss(self.fake_B * 0.5 + 0.5, self.real_A * 0.5 + 0.5)
if self.data_aug_prob == 0.0:
self.loss_G_GAN = self.criterionStyleGAN(self.netD(self.fake_B), True)
else:
fake_aug, _ = augment(self.fake_B, self.data_aug_prob)
self.loss_G_GAN = self.criterionStyleGAN(self.netD(fake_aug), True)
self.loss_G += self.loss_G_ST * self.config['training']['lambda_ST']
self.loss_G += self.loss_G_GAN * self.config['training']['lambda_GAN']
elif self.phase == TrainingPhase.FEW_SHOT:
self.loss_G_ST = self.vitLoss.calculate_global_ssim_loss(self.fake_B * 0.5 + 0.5, self.real_A * 0.5 + 0.5)
fake_clip_feats = self.clip_model.encode_image(self.preprocess_clip_image(self.fake_B, self.clip_model.visual.input_resolution))
fake_clip_feats = fake_clip_feats / fake_clip_feats.norm(dim=1, keepdim=True)
fake_clip_feats_dir = fake_clip_feats - self.real_A_clip_feats
self.loss_G_CLIP = (1.0 - self.cosineSim(fake_clip_feats_dir, self.clip_feats_dir)).mean()
if self.use_image_prompt:
fake_tokens = self.clip_vit_tokens
fake_tokens = fake_tokens / fake_tokens.norm(dim=2, keepdim=True)
D = fake_tokens.shape[2]
fake_tokens = fake_tokens.reshape(-1, D).permute(1, 0)
self.loss_G_PROJ = self.criterionL1(self.UUT @ fake_tokens, fake_tokens)
else:
self.loss_G_PROJ = 0.0
self.loss_G += self.loss_G_ST * self.config['training']['lambda_ST']
self.loss_G += self.loss_G_CLIP * self.config['training']['lambda_CLIP']
self.loss_G += self.loss_G_PROJ * self.config['training']['lambda_PROJ']
if backward:
self.loss_G.backward()
def optimize_parameters(self):
# forward
self.forward()
if not self.phase == TrainingPhase.BASE_MODEL:
# only G
self.optimizer_G.zero_grad()
self.backward_G()
self.optimizer_G.step()
# update G_ema
self.ema(self.netG_ema, self.netG, decay=self.config['training']['ema'])
else:
# G
self.set_requires_grad([self.netD], False)
self.optimizer_G.zero_grad()
self.backward_G()
self.optimizer_G.step()
# D
self.set_requires_grad([self.netD], True)
self.optimizer_D.zero_grad()
self.backward_D()
self.optimizer_D.step()
# update G_ema
self.ema(self.netG_ema, self.netG, decay=self.config['training']['ema'])
# r1 reg
self.step += 1
if self.step % self.d_reg_freq == 0:
self.optimizer_D.zero_grad()
self.backward_D_r1()
self.optimizer_D.step()
def eval_step(self):
self.forward(use_ema=True)
self.backward_G(False)
if self.phase == TrainingPhase.BASE_MODEL:
self.backward_D(False)
self.step += 1
def trace_jit(self, input):
self.netG = self.netG.module.cpu()
traced_script_module = torch.jit.trace(self.netG, input)
dummy_output = self.netG_ema(input)
dummy_output_traced = traced_script_module(input)
return traced_script_module, dummy_output, dummy_output_traced
|