File size: 6,213 Bytes
7e2a2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import torchvision
import sys
import shutil
import datetime


def check_path_is_static_data(path):
    last_extension = path.split(".")[-1]
    acceptable_extensions = ['png', 'jpg', 'jpeg', 'npy', 'npz']
    if last_extension.lower() in acceptable_extensions:
        return True
    return False

def check_path(path):
    try:
        if not os.path.exists(path):
            os.makedirs(path)
    except OSError as e:
        print(e)


def tensor2file(input_image, file_path, ext_name):
    """Convert a tensor into a file.

    Parameters:
        input_image  --  the input image tensor
        file_path    --  the file path without extension name
    """
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor):  # get the data from a variable
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor[0].cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scaling
    else:  # if it is a numpy array, do nothing
        image_numpy = input_image

    if image_numpy.shape[2] <= 3:
        image_numpy = image_numpy.astype(np.uint8)
        # save as image
        image_pil = Image.fromarray(image_numpy)
        image_pil.save(file_path + '.' + ext_name)
    else:
        # save as numpy
        np.save(file_path + '.npy', image_numpy)


def tensor2im(input_image, imtype=np.uint8):
    """"Converts a Tensor array into a numpy image array.

    Parameters:
        input_image (tensor) --  the input image tensor array
        imtype (type)        --  the desired type of the converted numpy array
    """
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor):  # get the data from a variable
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor[0].cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scaling
        if image_numpy.shape[2] > 3: # clip to 3 channel
            print('Warning: the channel count of output image exceeds 3.')
            image_numpy = image_numpy[:,:,:3]
    else:  # if it is a numpy array, do nothing
        image_numpy = input_image
    return image_numpy.astype(imtype)


def diagnose_network(net, name='network'):
    """Calculate and print the mean of average absolute(gradients)

    Parameters:
        net (torch network) -- Torch network
        name (str) -- the name of the network
    """
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)


def save_image(image_numpy, image_path, aspect_ratio=1.0):
    """Save a numpy image to the disk

    Parameters:
        image_numpy (numpy array) -- input numpy array
        image_path (str)          -- the path of the image
    """

    image_pil = Image.fromarray(image_numpy)
    h, w, _ = image_numpy.shape

    if aspect_ratio > 1.0:
        image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
    if aspect_ratio < 1.0:
        image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
    image_pil.save(image_path)


def print_numpy(x, val=True, shp=False):
    """Print the mean, min, max, median, std, and size of a numpy array

    Parameters:
        val (bool) -- if print the values of the numpy array
        shp (bool) -- if print the shape of the numpy array
    """
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    """create empty directories if they don't exist

    Parameters:
        paths (str list) -- a list of directory paths
    """
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    """create a single empty directory if it didn't exist

    Parameters:
        path (str) -- a single directory path
    """
    if not os.path.exists(path):
        os.makedirs(path)

def print_losses(epoch, iters, len_dataset, current_losses, average_losses, mode='training'):
    """print current losses on console"""
    if mode=='training':
        message = mode + ': (epoch: %d, iters: %d / %d) ' % (epoch, iters, len_dataset)
    else:
        message = mode + ': (epoch: %d) ' % epoch
    for k, v in current_losses.items():
        message += '%s: %.3f ' % (k, v)
    for k, v in average_losses.items():
        message += 'average %s: %.3f ' % (k, v.avg())
    message += datetime.datetime.now().strftime("%Y_%m_%d %H:%M:%S")
    print(message)  # print the message

def make_grid(model):
    """
    create an image grid to be visualized by tensorboard.
    """
    visuals = model.get_current_visuals()
    names, grids = [], []
    for name, img in visuals.items():
        names.append(name)
        grid = torchvision.utils.make_grid(img[:,:3,:,:], nrow=img.size()[0], normalize=True)
        grids.append(grid)
    return grids, names

class AverageMeter:
    def __init__(self):
        self.sum = 0
        self.num_item = 0

    def update(self, value):
        self.sum += value
        self.num_item += 1

    def avg(self):
        return self.sum / self.num_item

    def clear(self):
        self.sum = 0
        self.num_item = 0