File size: 24,624 Bytes
7e2a2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
from packaging import version
import random
import numpy as np
from PIL import Image, ImageFilter, ImageOps
from torchvision.transforms.transforms import Lambda, Compose
from torchvision.transforms import functional as F
from collections.abc import Iterable
import torch, torchvision
import numbers
import copy

if version.parse(torchvision.__version__) <= version.parse('0.7.0'):
    from torchvision.transforms.transforms import _get_image_size

def check_input_type_perform_action(input, type, action, *args, **kwargs):
    output = input
    if isinstance(input, list):
        for i in range(0, len(input)):
            if type is None:
                if input[i] is not None:  # do not combine with last line, to avoid calling isinstance on None.
                    output[i] = action(input[i], *args, **kwargs)
            elif isinstance(input[i], type):
                output[i] = action(input[i], *args, **kwargs)
    elif type is None:
        if input is not None:
            output = action(input, *args, **kwargs)
    elif isinstance(input, type):
        output = action(input, *args, **kwargs)
    return output


"""
Most of these functions are imported from torchvision.transforms.transforms and edited to support 2 or more inputs.
"""

class JointCompose(object):
    """
    Composes several transforms together.
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, input1, input2):
        for t in self.transforms:
            input1, input2 = t(input1, input2)
        return input1, input2


class Grayscale(object):

    def __init__(self, input1_output_channels=1, input2_output_channels=1):
        self.input1_output_channels = input1_output_channels
        self.input2_output_channels = input2_output_channels

    def __call__(self, input1, input2):
        output1 = F.to_grayscale(input1, num_output_channels=self.input1_output_channels) if self.input1_output_channels == 1 else input1
        output2 = check_input_type_perform_action(input2, Image.Image, F.to_grayscale, num_output_channels=self.input2_output_channels) \
            if self.input2_output_channels == 1 else input2
        return output1, output2


class Resize(object):

    def __init__(self, size, interpolation=Image.BILINEAR):
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
        self.size = size
        self.interpolation = interpolation

    def __call__(self, input1, input2):
        output1 = F.resize(input1, self.size, self.interpolation)
        output2 = check_input_type_perform_action(input2, Image.Image, F.resize, self.size, self.interpolation)
        return output1, output2


class ScaleWidth:

    def __init__(self, target_size, method=Image.BICUBIC):
        self.target_size = target_size
        self.method = method

    def scalewidth(self, img):
        ow, oh = img.size
        w = self.target_size
        h = int(self.target_size * oh / ow)
        img_resized = img.resize((w, h), self.method)

        if h > w:
            # if resized image's height is larger than its width, crop the center
            left = 0
            top = h // 2 - self.target_size // 2
            right = self.target_size
            bottom = top + self.target_size
            img_resized = img_resized.crop((left, top, right, bottom))
        elif h < w:
            # pad the heights
            delta_w = self.target_size - w
            delta_h = self.target_size - h
            padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
            img_resized = ImageOps.expand(img_resized, padding)

        return img_resized

    def __call__(self, input1, input2):
        output1 = self.scalewidth(input1)
        output2 = check_input_type_perform_action(input2, Image.Image, self.scalewidth)
        return output1, output2


class RandomCrop(object):

    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    @staticmethod
    def get_params(img, output_size):
        if version.parse(torchvision.__version__) <= version.parse('0.7.0'):
            w, h = _get_image_size(img)
        else:
            w, h = F._get_image_size(img)
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def pad(self, img):
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)

        return img

    def get_crop_range(self, img):
        return self.get_params(img, self.size)

    def pad_and_crop(self, input, i, j, h, w):
        return F.crop(self.pad(input), i, j, h, w)

    def __call__(self, input1, input2):
        output1 = self.pad(input1)
        i, j, h, w = self.get_crop_range(output1)
        output1 = F.crop(output1, i, j, h, w)
        output2 = check_input_type_perform_action(input2, Image.Image, self.pad_and_crop, i, j, h, w)
        return output1, output2


class Crop:

    def __init__(self, pos, size):
        self.pos = pos
        self.size = size

    def crop(self, img):
        ow, oh = img.size
        x1, y1 = self.pos
        tw = th = self.size
        if (ow > tw or oh > th):
            return img.crop((x1, y1, x1 + tw, y1 + th))
        return img

    def __call__(self, input1, input2):
        output1 = self.crop(input1)
        output2 = check_input_type_perform_action(input2, Image.Image, self.crop)
        return output1, output2


class ColorJitter(object):

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        transforms = []

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

        random.shuffle(transforms)
        transform = Compose(transforms)

        return transform

    def __call__(self, input1, input2):
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        output1 = transform(input1)
        output2 = check_input_type_perform_action(input2, Image.Image, transform)
        return output1, output2


class RandomAffine(object):

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, input1, input2):
        params = self.get_params(self.degrees, self.translate, self.scale, self.shear, input1.size)
        output1 = F.affine(input1, *params, resample=self.resample, fillcolor=self.fillcolor)
        output2 = check_input_type_perform_action(input2, Image.Image, F.affine, *params, resample=self.resample, fillcolor=self.fillcolor)
        return output1, output2


class RandomRotation(object):
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
        self.fill = fill

    @staticmethod
    def get_params(degrees):
        angle = random.uniform(degrees[0], degrees[1])
        return angle

    def __call__(self, input1, input2):
        angle = self.get_params(self.degrees)
        output1 = F.rotate(input1, angle, self.resample, self.expand, self.center, self.fill)
        output2 = check_input_type_perform_action(input2, Image.Image, F.rotate, angle, self.resample, self.expand, self.center, self.fill)
        return output1, output2


class RandomBlur:
    def __init__(self, blur_chance):
        self.blur_chance = blur_chance

    def get_params(self):
        if self.blur_chance > random.random():
            kernel = random.randint(3, 12)
            while kernel % 2 != 1:
                kernel = random.randint(3, 12)
        else:
            kernel = None
        return kernel

    def blur(self, image, kernel):
        image = image.filter(ImageFilter.GaussianBlur(radius=kernel))
        return image

    def __call__(self, input1, input2):
        kernel = self.get_params()
        if kernel is None:
            return input1, input2
        else:
            output1 = self.blur(input1, kernel)
            output2 = check_input_type_perform_action(input2, Image.Image, self.blur, kernel)
            return output1, output2


class NoiseTransform:
    """code is partly from http://www.xiaoliangbai.com/2016/09/09/more-on-image-noise-generation and edited by Oliver."""

    def __init__(self, noise_type):
        self.noise_type = noise_type

    def get_params(self, image):
        params = []
        image_np = np.array(image)
        row, col, ch = image_np.shape
        if random.random() < 0.5:
            return None
        if self.noise_type == "gauss":
            mean = 0.0
            std = random.uniform(0.001, 0.3)
            gauss = np.random.normal(mean, std, (row, col, ch))
            gauss = gauss.reshape(row, col, ch)
            params.append(gauss)
            return params
        elif self.noise_type == "s&p":
            s_vs_p = 0.5
            amount = random.uniform(0.001, 0.01)

            # Generate Salt '1' noise
            num_salt = np.ceil(amount * image_np.size * s_vs_p)
            coords = [np.random.randint(0, i - 1, int(num_salt))
                      for i in image_np.shape]
            coords[2] = np.random.randint(0, 3, int(num_salt))
            params.append(copy.deepcopy(coords))

            # Generate Pepper '0' noise
            num_pepper = np.ceil(amount * image_np.size * (1. - s_vs_p))
            coords = [np.random.randint(0, i - 1, int(num_pepper))
                      for i in image_np.shape]
            params.append(copy.deepcopy(coords))
            return params
        elif self.noise_type == "poisson":
            noisy = np.random.poisson(image_np)
            params.append(noisy)
            return params
        elif self.noise_type == "speckle":
            factor = random.uniform(0.01, 0.4)
            gauss = np.random.randn(row, col, ch)
            gauss = gauss.reshape(row, col, ch) * factor
            params.append(gauss)
            return params
        elif self.noise_type == "band":
            smaller_dim = min(col, row)
            num_bands = random.randrange(smaller_dim // 2, smaller_dim)
            scale = random.uniform(1.0, 10.0)

            offset = np.zeros(image_np.shape).astype(np.float64)

            # horizontal branding
            num_list = list(range(image.width))  # list of integers from 0 to image width-1
            # adjust this boundaries to fit your needs
            random.shuffle(num_list)
            horizontal_bands = num_list[:num_bands]
            for w in horizontal_bands:
                offset[w, :, :] += random.uniform(-1, 1) * scale

            # vertical branding
            num_list = list(range(image.height))  # list of integers from 0 to image height-1
            # adjust this boundaries to fit your needs
            random.shuffle(num_list)
            vertical_bands = num_list[:num_bands]
            for h in vertical_bands:
                offset[:, h, :] += random.uniform(-1, 1) * scale

            params.append(offset)
            return params
        else:
            return params

    def apply(self, image, params):
        """
        image: ndarray (input image data. It will be converted to float)
        """
        if params is None:
            return image
        image_np = np.array(image)
        if self.noise_type == "gauss":
            gauss = params[0]
            noisy = image_np + image_np * gauss
            noisy = np.clip(noisy, 0, 255)
            return Image.fromarray(noisy.astype('uint8'))
        elif self.noise_type == "s&p":
            out = image_np
            # Generate Salt '1' noise
            coords = params[0]
            out[tuple(coords)] = 255
            # Generate Pepper '0' noise
            coords = params[1]
            out[tuple(coords)] = 0
            out = np.clip(out, 0, 255)
            return Image.fromarray(out.astype('uint8'))
        elif self.noise_type == "poisson":
            noisy = params[0]
            noisy = np.clip(noisy, 0, 255)
            return Image.fromarray(noisy.astype('uint8'))
        elif self.noise_type == "speckle":
            gauss = params[0]
            noisy = image_np + image_np * gauss
            noisy = np.clip(noisy, 0, 255)
            return Image.fromarray(noisy.astype('uint8'))
        elif self.noise_type == "band":
            offset = params[0]
            noisy = image_np + offset
            noisy = np.clip(noisy, 0, 255)
            return Image.fromarray(noisy.astype('uint8'))
        else:
            return image

    def __call__(self, input1, input2):
        params = self.get_params(input1)
        output1 = self.apply(input1, params)
        output2 = check_input_type_perform_action(input2, Image.Image, self.apply, params)
        return output1, output2


class MakePower2:
    def __init__(self, base, method=Image.BICUBIC):
        self.base = base
        self.method = method
        self.print_size_warning = PrintSizeWarning()

    def apply(self, img):
        ow, oh = img.size
        h = int(round(oh / self.base) * self.base)
        w = int(round(ow / self.base) * self.base)
        if h == oh and w == ow:
            return img

        self.print_size_warning(ow, oh, w, h)
        return img.resize((w, h), self.method)

    def __call__(self, input1, input2):
        output1 = self.apply(input1)
        output2 = check_input_type_perform_action(input2, Image.Image, self.apply)
        return output1, output2


class RandomHorizontalFlip(object):
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def get_params(self):
        if random.random() < self.p:
            return True
        else:
            return False

    def __call__(self, input1, input2):
        flip = self.get_params()
        if flip:
            output1 = F.hflip(input1)
            output2 = check_input_type_perform_action(input2, Image.Image, F.hflip)
        else:
            output1, output2 = input1, input2
        return output1, output2


class Flip:
    def __init__(self, flip):
        self.flip = flip

    def transpose(self, input):
        return input.transpose(Image.FLIP_LEFT_RIGHT)

    def __call__(self, input1, input2):
        if self.flip:
            output1 = input1.transpose(Image.FLIP_LEFT_RIGHT)
            output2 = check_input_type_perform_action(input2, Image.Image, self.transpose)
        else:
            output1, output2 = input1, input2
        return output1, output2


class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
    """

    def __call__(self, input1, input2):
        output1 = F.to_tensor(input1)
        output2 = check_input_type_perform_action(input2, None, F.to_tensor)
        return output1, output2


class Normalize(object):
    """Normalize a tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
        inplace(bool,optional): Bool to make this operation in-place.

    """

    def __init__(self, first_input_mean, first_input_std, second_input_mean=None, second_input_std=None, inplace=False):
        self.first_input_mean = first_input_mean
        self.first_input_std = first_input_std
        self.second_input_mean = second_input_mean if second_input_mean is not None else first_input_mean
        self.second_input_std = second_input_std if second_input_std is not None else first_input_std
        self.inplace = inplace

    def __call__(self, tensor1, tensor2):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
        output1 = F.normalize(tensor1, self.first_input_mean, self.first_input_std, self.inplace)
        output2 = check_input_type_perform_action(tensor2, None, F.normalize, self.second_input_mean, self.second_input_std, self.inplace)
        return output1, output2


class PrintSizeWarning:
    def __init__(self):
        self.has_printed = False

    def __call__(self, ow, oh, w, h):
        if not self.has_printed:
            print("The image size needs to be a multiple of 4. "
                "The loaded image size was (%d, %d), so it was adjusted to "
                "(%d, %d). This adjustment will be done to all images "
                "whose sizes are not multiples of 4" % (ow, oh, w, h))
            self.has_printed = True


class ImagePathToImage:
    """Convert an image path to an image.

    Parameters:
        filename  --  the input file path.
    """

    def load_img(self, path):
        return Image.open(path).convert('RGB')

    def __call__(self, filename1, filename2):
        img1 = self.load_img(filename1)
        img2 = check_input_type_perform_action(filename2, None, self.load_img)
        return img1, img2


class NumpyToTensor:
    """Convert a numpy array to a tensor.

    Parameters:
        filename  --  the input file path.
    """

    def load_numpy(self, filename):
        npy = np.load(filename)
        if isinstance(npy, np.lib.npyio.NpzFile):
            npy = npy['data']
        if len(npy.shape) == 2:
            npy = np.tile(npy, (1, 1, 1))
        else:
            npy = np.transpose(npy, (2, 0, 1))
        return torch.from_numpy(npy).float()

    def __call__(self, filename1, filename2):
        tensor1 = self.load_numpy(filename1)
        tensor2 = check_input_type_perform_action(filename2, None, self.load_numpy)
        return tensor1, tensor2