Spaces:
Sleeping
Sleeping
File size: 20,089 Bytes
7e2a2a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import argparse
import time
import datetime
from data import CustomDataLoader
from data.super_dataset import SuperDataset
from models import create_model
from configs import parse_config
from utils.util import print_losses, check_path, make_grid, AverageMeter
from utils.data_utils import check_old_config_val_possible
import os
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
import copy
import sys
def main():
# parse arguments
parser = argparse.ArgumentParser(description='Style Master')
parser.add_argument('--cfg_file', type=str, default='./exp/sp2pII-phase4.yaml')
parser.add_argument('--image_prompt', type=str, default='./example/reference/01.png')
parser.add_argument('--text_prompt', type=str, default='sketch with black pencil')
parser.add_argument('--name', type=str, default='01')
args = parser.parse_args()
# parse config
config = parse_config(args.cfg_file)
if args.image_prompt:
config['training']['image_prompt'] = args.image_prompt
if args.text_prompt:
config['training']['text_prompt'] = args.text_prompt
if args.name:
config['common']['name'] = args.name
for group in config:
print(group + ':')
for k, v in config[group].items():
print(' {}: {}'.format(k, v))
# we want GPU ids match nvidia-smi output order, so do some manipulations here.
# GPU ids need to always start from 0, but the system variable CUDA_VISIBLE_DEVICES can be set to e.g. GPU 2 and 3.
gpu_string = ','.join(map(str, config['common']['gpu_ids']))
gpu_ids_fix = list(range(len(config['common']['gpu_ids'])))
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_string
config['common']['gpu_ids'] = gpu_ids_fix
if config['training']['DDP']:
num_nodes = config['training']['num_nodes']
num_gpus = len(config['common']['gpu_ids'])
config['training']['world_size'] = num_gpus * num_nodes
os.environ['MASTER_ADDR'] = config['training']['DDP_address']
os.environ['MASTER_PORT'] = config['training']['DDP_port']
mp.spawn(train_val, nprocs=num_gpus, args=(config,))
else:
# under DP mode, shall set batch size to (actual effective batch size * num_gpu)
config['dataset']['batch_size'] *= len(config['common']['gpu_ids'])
if 'patch_batch_size' in config['dataset']:
config['dataset']['patch_batch_size'] *= len(config['common']['gpu_ids'])
train_val(None, config)
# GPU parameter is automatically filled when using DDP. It is an irrelevant placeholder if not using DDP.
def train_val(gpu, config):
import torch
if config['training']['val']:
config_val = copy.deepcopy(config)
config_val['common']['phase'] = 'val'
if config['training']['DDP']:
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=config['training']['world_size'],
rank=gpu
)
torch.cuda.set_device(gpu) # DDP requirement
# Dataset and dataloader construction.
# prepare train data
train_dataset = SuperDataset(config, shuffle=True, check_all_data=config['dataset']['check_all_data'],
DDP_device=gpu)
if config['dataset']['train_data'] == {}:
print("old data config format detected. Converting to new format.")
train_dataset.config = train_dataset.convert_old_config_to_new()
train_dataset.static_data.load_static_data()
train_dataset.static_data.create_transforms()
if train_dataset.check_all_data:
train_dataset.check_data()
if len(train_dataset) == 0:
if gpu == 0 or gpu is None:
print("Train set has 0 data samples. Exiting.")
sys.exit(0)
_, train_video_dataset = train_dataset.split_data('count', 5, mode='copy_partial')
# prepare val data
force_use_train_data = False
if config['training']['val']:
val_dataset = SuperDataset(config_val)
if len(config_val['dataset']['train_data']) == 0:
if check_old_config_val_possible(config_val):
val_dataset.convert_old_config_to_new()
val_dataset.static_data.load_static_data()
else:
force_use_train_data = True
else:
val_dataset.static_data.load_static_data()
if len(val_dataset) == 0 or force_use_train_data:
if gpu == 0 or gpu is None:
print("Validation set has 0 data samples. Using part of training data for validation.")
validation_ratio = config['training']['val_percent']/100
train_dataset, val_dataset = train_dataset.split_data('ratio', validation_ratio, mode='split')
if len(val_dataset) == 0:
print("There are too few training data to establish a validation set. "
"Use the training set as validation set.")
val_dataset = copy.deepcopy(train_dataset)
val_dataset.static_data.create_transforms()
if val_dataset.check_all_data:
val_dataset.check_data()
# print dataset info
if gpu == 0 or gpu is None:
print("--------train dataset static data content-----------")
for i, cnt in enumerate(train_dataset.static_data.len_of_groups):
print("%s: %d" % (train_dataset.static_data.group_names[i], cnt))
print("----------------------------------------")
if config['training']['val']:
print("--------val dataset static data content-----------")
for i, cnt in enumerate(val_dataset.static_data.len_of_groups):
print("group %s: %d" % (val_dataset.static_data.group_names[i], cnt))
print("----------------------------------------")
# prepare dataloaders
train_dataloader = CustomDataLoader(config, train_dataset, DDP_gpu=gpu, drop_last=config['dataset']['drop_last'])
if config['training']['val']:
val_dataloader = CustomDataLoader(config_val, val_dataset, DDP_gpu=gpu, drop_last=config['dataset']['drop_last'])
config_train_video = copy.deepcopy(config)
config_train_video['dataset']['serial_batches'] = True
config_train_video['batch_size'] = 1
train_video_dataloader = CustomDataLoader(config_train_video, train_video_dataset, DDP_gpu=None, drop_last=False)
if config['training']['DDP']:
model = create_model(config, DDP_device=gpu) # create a DDP model given opt.model and other options
model.setup(config, DDP_device=gpu) # regular setup: load and print networks; create schedulers
else:
model = create_model(config) # create a model (singleGPU or dataparallel) given opt.model and other options
model.setup(config) # regular setup: load and print networks; create schedulers
total_iters = model.total_iters # the total number of training iterations
# visualization setups
if gpu == 0 or gpu is None:
log_dir = os.path.join(config['training']['log_dir'], config['common']['name'] + '_' +
datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
check_path(log_dir)
writer = SummaryWriter(log_dir)
train_loss_averages = {}
val_loss_averages = {}
if config['training']['epoch_as_iter']:
iter_ub = config['training']['n_epochs'] + config['training']['n_epochs_decay']
while total_iters < iter_ub:
# Training loop
if gpu == 0 or gpu is None:
print('-------------------------------Training----------------------------------')
model.train()
quit = False
for i, data in enumerate(train_dataloader):
total_iters += 1
if total_iters >= iter_ub:
quit = True
break
model.curr_epoch = total_iters
model.total_iters = total_iters
model.set_input(data)
model.optimize_parameters()
losses = model.get_current_losses()
for k, v in losses.items():
if k not in train_loss_averages:
train_loss_averages[k] = AverageMeter()
train_loss_averages[k].update(v)
if (total_iters % config['training']['print_freq'] == 0) and ((gpu == 0) or (gpu is None)):
print_losses(total_iters, 1, 1, losses, train_loss_averages)
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Training/' + name, img_grid, total_iters)
else:
writer.add_image('iteration ' + str(total_iters) + ' training ' + name, img_grid)
for k, v in losses.items():
writer.add_scalar('Training/' + k, train_loss_averages[k].avg(), total_iters)
if (total_iters % config['training']['save_latest_freq'] == 0) and ((gpu == 0) or (gpu is None)):
print('saving the latest model (total_iters %d)' % total_iters)
model.save_networks('latest')
if (total_iters % config['training']['save_epoch_freq'] == 0) and ((gpu == 0) or (gpu is None)):
print('saving the model at the end of iters %d' % total_iters)
model.save_networks('latest')
#model.save_networks(total_iters)
model.update_learning_rate()
for k, v in losses.items():
train_loss_averages[k].clear()
if quit:
exit(0)
if config['training']['val']:
# Validation loop
if gpu == 0 or gpu is None:
print('-------------------------------Validating----------------------------------')
model.eval()
for i, data in enumerate(val_dataloader):
with torch.no_grad():
model.set_input(data)
model.eval_step()
losses = model.get_current_losses()
for k, v in losses.items():
if k not in val_loss_averages:
val_loss_averages[k] = AverageMeter()
val_loss_averages[k].update(v)
if gpu == 0 or gpu is None:
print_losses(total_iters, 1, 1, losses, val_loss_averages, mode='validating')
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Validation/' + name, img_grid, total_iters)
else:
writer.add_image('iteration ' + str(total_iters) + ' validating ' + name, img_grid)
for k, v in losses.items():
writer.add_scalar('Validation/' + k, val_loss_averages[k].avg(), total_iters)
main_loss = 'G' if 'G' in losses else model.loss_names[0]
if val_loss_averages[main_loss].avg() < model.best_val_loss and (gpu == 0 or gpu is None):
model.best_val_loss = val_loss_averages[main_loss].avg()
print('New validation best loss. saving the model.')
model.save_networks('', val_loss=model.best_val_loss)
for k, v in losses.items():
val_loss_averages[k].clear()
if config['training']['save_training_progress']:
# produce images on the same images every epoch to visualize how training is progressing.
if gpu == 0 or gpu is None:
for i, data in enumerate(train_video_dataloader):
with torch.no_grad():
model.set_input(data)
model.forward()
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Training Video/' + name + ' ' + str(i), img_grid, total_iters)
else:
writer.add_image('epoch 0 iteration ' + str(total_iters) + ' training_video ' + name + ' ' + str(i), img_grid)
for epoch in range(model.curr_epoch, config['training']['n_epochs'] + config['training']['n_epochs_decay'] + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
model.curr_epoch = epoch
# Training loop
if gpu == 0 or gpu is None:
print('-------------------------------Training----------------------------------')
model.train()
for i, data in enumerate(train_dataloader): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
total_iters += 1
epoch_iter += 1
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
losses = model.get_current_losses()
for k, v in losses.items():
if k not in train_loss_averages:
train_loss_averages[k] = AverageMeter()
train_loss_averages[k].update(v)
if epoch_iter % config['training']['print_freq'] == 0 and ((gpu == 0) or (gpu is None)):
print_losses(epoch, epoch_iter, (len(train_dataset) + config['dataset']['batch_size'] - 1) // config['dataset']['batch_size'], losses, train_loss_averages)
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Training/' + name, img_grid, total_iters)
else:
writer.add_image('epoch ' + str(epoch) + ' iteration ' + str(total_iters) + ' training ' + name, img_grid)
for k, v in losses.items():
writer.add_scalar('Training/' + k, train_loss_averages[k].avg(), total_iters)
if total_iters % config['training']['save_latest_freq'] == 0 and ((gpu == 0) or (gpu is None)): # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
model.save_networks('latest')
iter_data_time = time.time()
if gpu == 0 or gpu is None:
print_losses(epoch, epoch_iter, (len(train_dataset) + config['dataset']['batch_size'] - 1) // config['dataset']['batch_size'], losses, train_loss_averages)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, config['training']['n_epochs'] + config['training']['n_epochs_decay'], time.time() - epoch_start_time))
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Training/' + name, img_grid, total_iters)
else:
writer.add_image('epoch ' + str(epoch) + ' iteration ' + str(total_iters) + ' training ' + name, img_grid)
for k, v in losses.items():
writer.add_scalar('Training/' + k, train_loss_averages[k].avg(), total_iters)
if epoch % config['training']['save_epoch_freq'] == 0 and ((gpu == 0) or (gpu is None)): # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
model.update_learning_rate() # update learning rates at the end of every epoch.
for k, v in losses.items():
train_loss_averages[k].clear()
if config['training']['val']:
# Validation loop
if gpu == 0 or gpu is None:
print('-------------------------------Validating----------------------------------')
model.eval()
epoch_iter = 0
for i, data in enumerate(val_dataloader): # inner loop within one epoch
epoch_iter += 1
with torch.no_grad():
model.set_input(data)
model.eval_step()
losses = model.get_current_losses()
for k, v in losses.items():
if k not in val_loss_averages:
val_loss_averages[k] = AverageMeter()
val_loss_averages[k].update(v)
if gpu == 0 or gpu is None:
print_losses(epoch, epoch_iter, (len(val_dataset) + config['dataset']['batch_size'] - 1)
// config['dataset']['batch_size'], losses, val_loss_averages, mode='validating')
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Validation/' + name, img_grid, total_iters)
else:
writer.add_image('epoch ' + str(epoch) + ' iteration ' + str(total_iters) + ' validating ' + name, img_grid)
for k, v in losses.items():
writer.add_scalar('Validation/' + k, val_loss_averages[k].avg(), total_iters)
main_loss = 'G' if 'G' in losses else model.loss_names[0]
if val_loss_averages[main_loss].avg() < model.best_val_loss and gpu == 0 or gpu is None:
model.best_val_loss = val_loss_averages[main_loss].avg()
print('New validation best loss. saving the model.')
model.save_networks('', val_loss=model.best_val_loss)
for k, v in losses.items():
val_loss_averages[k].clear()
if config['training']['save_training_progress']:
# produce images on the same images every epoch to visualize how training is progressing.
if gpu == 0 or gpu is None:
for i, data in enumerate(train_video_dataloader):
with torch.no_grad():
model.set_input(data)
model.forward()
tmp = make_grid(model)
for j in range(0, len(tmp[0])):
img_grid, name = tmp[0][j], tmp[1][j]
if config['training']['use_new_log']:
writer.add_image('Training Video/' + name + ' ' + str(i), img_grid, total_iters)
else:
writer.add_image('epoch ' + str(epoch) + ' iteration ' + str(total_iters) + ' training_video ' + name + ' ' + str(i), img_grid)
# If we shut down process now, writer could save incomplete data. Wait a bit to let it finish.
time.sleep(5)
if __name__ == '__main__':
main()
|