File size: 15,909 Bytes
7e2a2a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import torch
from collections import OrderedDict
from abc import ABC, abstractmethod
from models.modules import networks
from utils.util import check_path
from  utils.net_size import calc_computation


class BaseModel(ABC):
    """This class is an abstract base class (ABC) for models.
    To create a subclass, you need to implement the following five functions:
        -- <__init__>:                      initialize the class; first call BaseModel.__init__(self, opt).
        -- <set_input>:                     unpack data from dataset and apply preprocessing.
        -- <forward>:                       produce intermediate results.
        -- <optimize_parameters>:           calculate losses, gradients, and update network weights.
        -- <modify_commandline_options>:    (optionally) add model-specific options and set default options.
    """

    def __init__(self, config, DDP_device=None):
        """Initialize the BaseModel class.

        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions

        When creating your custom class, you need to implement your own initialization.
        In this function, you should first call <BaseModel.__init__(self, opt)>
        Then, you need to define four lists:
            -- self.loss_names (str list):          specify the training losses that you want to plot and save.
            -- self.model_names (str list):         define networks used in our training.
            -- self.visual_names (str list):        specify the images that you want to display and save.
            -- self.optimizers (optimizer list):    define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
        """
        self.config = config
        self.gpu_ids = config['common']['gpu_ids']
        self.isTrain = config['common']['phase'] == 'train'
        if DDP_device is None:
            self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')  # get device name: CPU or GPU
            self.DDP_device = None
            self.on_cpu = (self.device.type == 'cpu')
        else:
            self.device = DDP_device
            self.DDP_device = DDP_device
            self.on_cpu = False
        self.save_dir = os.path.join(config['training']['checkpoints_dir'], config['common']['name'])  # save all the checkpoints to save_dir
        if config['dataset']['preprocess'] != 'scale_width':  # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
            torch.backends.cudnn.benchmark = True
        self.loss_names = []
        self.model_names = []
        self.visual_names = []
        self.optimizers = []
        self.image_paths = []
        self.metric = 0  # used for learning rate policy 'plateau'
        self.curr_epoch = 0
        self.total_iters = 0
        self.best_val_loss = 999999

    @abstractmethod
    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.

        Parameters:
            input (dict): includes the data itself and its metadata information.
        """
        pass

    @abstractmethod
    def forward(self):
        """Run forward pass; called by both functions <configimize_parameters> and <test>."""
        pass

    @abstractmethod
    def trace_jit(self, input):
        """trace torchscript model for C++. Called by <trace_jit.py>"""
        pass

    @abstractmethod
    def optimize_parameters(self):
        """Calculate losses, gradients, and update network weights; called in every training iteration"""
        pass

    @abstractmethod
    def eval_step(self):
        """Forward and backward pass but without upgrading weights; called in every validation iteration"""
        pass

    def setup(self, config, DDP_device=None):
        """Load and print networks; create schedulers

        Parameters:
            opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
        """
        if self.isTrain:
            self.schedulers = [networks.get_scheduler(optimizer, config) for optimizer in self.optimizers]
        if not self.isTrain:
            load_suffix = '{}'.format(config['testing']['which_epoch'])
            self.load_networks(load_suffix)
        elif config['training']['continue_train']:
            load_suffix = '{}'.format(config['training']['which_epoch'])
            self.load_networks(load_suffix)
        self.print_networks(config['common']['verbose'], DDP_device=DDP_device)

    def eval(self):
        """Make models eval mode during test time"""
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, 'net' + name)
                net.eval()

    def train(self):
        """Make models train mode during train time"""
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, 'net' + name)
                net.train()

    def test(self):
        """Forward function used in test time.

        This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
        It also calls <compute_visuals> to produce additional visualization results
        """
        with torch.no_grad():
            self.forward()
            self.compute_visuals()

    def compute_visuals(self):
        """Calculate additional output images for visdom and HTML visualization"""
        pass

    def get_image_paths(self):
        """ Return image paths that are used to load current data"""
        return self.image_paths

    def update_learning_rate(self):
        """Update learning rates for all the networks; called at the end of every epoch"""
        for scheduler in self.schedulers:
            if self.config['training']['lr_policy'] == 'plateau':
                scheduler.step(self.metric, epoch=self.curr_epoch)
            else:
                scheduler.step(epoch=self.curr_epoch)

        # lr = self.optimizers[0].param_groups[0]['lr']
        # print('learning rate = %.7f' % lr)

    def get_current_visuals(self):
        """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
        if not self.isTrain and len(self.config['testing']['visual_names']) > 0:
            visual_names = list(set(self.visual_names).intersection(set(self.config['testing']['visual_names'])))
        else:
            visual_names = self.visual_names
        visual_ret = OrderedDict()
        for name in visual_names:
            if isinstance(name, str):
                visual_ret[name] = getattr(self, name)
        return visual_ret

    def get_current_losses(self):
        """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
        errors_ret = OrderedDict()
        for name in self.loss_names:
            if isinstance(name, str):
                errors_ret[name] = float(getattr(self, 'loss_' + name))  # float(...) works for both scalar tensor and float number
        return errors_ret

    def save_networks(self, epoch, val_loss=None):
        """Save all the networks to the disk.

        Parameters:
            epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
        """
        check_path(self.save_dir)
        save_filename = 'epoch_%s.pth' % epoch if val_loss is None else 'best_val_epoch.pth'
        checkpoint = {}
        # save all the models
        for name in self.model_names:
            if isinstance(name, str):
                net = getattr(self, 'net' + name)
                if len(self.gpu_ids) > 0 and torch.cuda.is_available():
                    # if use DDP, save only on rank 0. If using dataparallel, second condition meets.
                    if self.DDP_device == 0 or self.DDP_device is None:
                        checkpoint[name+'_model'] = net.module.state_dict()
                else:
                    checkpoint[name+'_model'] = net.state_dict()

        # save all the optimizers
        optimizer_index = 0
        for optimizer in self.optimizers:
            checkpoint['optimizer_'+str(optimizer_index)] = optimizer.state_dict()
            optimizer_index += 1

        # save all the schedulers
        scheduler_index = 0
        for scheduler in self.schedulers:
            checkpoint['scheduler_' + str(scheduler_index)] = scheduler.state_dict()
            scheduler_index += 1

        # save other information
        checkpoint['epoch'] = self.curr_epoch
        checkpoint['total_iters'] = self.total_iters
        checkpoint['metric'] = self.metric
        if val_loss is not None:
            checkpoint['best_val_loss'] = val_loss

        torch.save(checkpoint, os.path.join(self.save_dir, save_filename))

    def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
        """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
        key = keys[i]
        if i + 1 == len(keys):  # at the end, pointing to a parameter/buffer
            if module.__class__.__name__.startswith('InstanceNorm') and \
                    (key == 'running_mean' or key == 'running_var'):
                if getattr(module, key) is None:
                    state_dict.pop('.'.join(keys))
            if module.__class__.__name__.startswith('InstanceNorm') and \
               (key == 'num_batches_tracked'):
                state_dict.pop('.'.join(keys))
        else:
            self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)

    def load_networks(self, epoch, ckpt=None):
        """Load all the networks from the disk.

        Parameters:
            epoch (str) -- current epoch; used in the file name 'epoch_%s.pth' % epoch. Models in the old format
            with the names '%s_net_%s.pth' % (epoch, name) are also supported. Models in the new format takes priority.
        """
        load_filename = 'epoch_%s.pth' % epoch
        if ckpt is None:
            final_load_path = os.path.join(self.save_dir, load_filename)
        else:
            final_load_path = ckpt
        if os.path.exists(final_load_path):
            # new checkpoint format.
            print('loading the model in new format from %s' % final_load_path)
            if self.DDP_device is not None:
                # unpack the tensors on GPU 0, then transfer to whatever device it needs to be on
                map_location = {'cuda:%d' % 0: 'cuda:%d' % self.DDP_device}
                checkpoint = torch.load(final_load_path, map_location=map_location)
            else:
                checkpoint = torch.load(final_load_path)
            for k, v in checkpoint.items():
                # load models
                if 'model' in k:
                    name = k.split('_model')[0]
                    if not self.isTrain and 'D' in name: # does not load discriminator when not training
                        continue
                    if not hasattr(self, 'net' + name):
                        continue
                    net = getattr(self, 'net' + name)
                    if isinstance(net, torch.nn.DataParallel) or isinstance(net, torch.nn.parallel.DistributedDataParallel):
                        net = net.module

                    # if you are using PyTorch newer than 0.4 (e.g., built from
                    # GitHub source), you can remove str() on self.device
                    if hasattr(v, '_metadata'):
                        del v._metadata

                    # patch InstanceNorm checkpoints prior to 0.4
                    for key in list(v.keys()):  # need to copy keys here because we mutate in loop
                        self.__patch_instance_norm_state_dict(v, net, key.split('.'))
                    net.load_state_dict(v)
                # load optimizers
                elif 'optimizer' in k:
                    if not self.isTrain:
                        continue
                    index = int(k.split('_')[-1])
                    self.optimizers[index].load_state_dict(v)
                # load schedulers
                elif 'scheduler' in k:
                    if not self.isTrain:
                        continue
                    index = int(k.split('_')[-1])
                    self.schedulers[index].load_state_dict(v)
                # load other stuffs
                elif k == 'epoch':
                    self.curr_epoch = int(v) + 1
                elif k == 'total_iters':
                    self.total_iters = int(v)
                elif k == 'metric':
                    self.metric = float(v)
                elif k == 'best_val_loss':
                    self.best_val_loss = float(v)
                else:
                    print('Checkpoint load error. Unrecognized parameter saved in checkpoint: ', k)
            return

        # old checkpoint format.
        for name in self.model_names:
            if isinstance(name, str):
                load_filename = '%s_net_%s.pth' % (epoch, name)
                load_path = os.path.join(self.save_dir, load_filename)
                net = getattr(self, 'net' + name)
                if isinstance(net, torch.nn.DataParallel) or isinstance(net, torch.nn.parallel.DistributedDataParallel):
                    net = net.module
                print('loading the model from %s' % load_path)
                # if you are using PyTorch newer than 0.4 (e.g., built from
                # GitHub source), you can remove str() on self.device
                state_dict = torch.load(load_path, map_location=str(self.device))
                if hasattr(state_dict, '_metadata'):
                    del state_dict._metadata

                # patch InstanceNorm checkpoints prior to 0.4
                for key in list(state_dict.keys()):  # need to copy keys here because we mutate in loop
                    self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
                net.load_state_dict(state_dict)

    def print_networks(self, verbose, DDP_device=None):
        """Print the total number of parameters in the network and (if verbose) network architecture

        Parameters:
            verbose (bool) -- if verbose: print the network architecture
        """
        if DDP_device is None or DDP_device == 0:
            print('---------- Networks initialized -------------')
            for name in self.model_names:
                if isinstance(name, str):
                    net = getattr(self, 'net' + name)
                    num_params = 0
                    for param in net.parameters():
                        num_params += param.numel()
                    if verbose:
                        print(net)
                    print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
                    if 'G' in name:
                        calc_computation(net, self.config['model']['input_nc'], self.config['dataset']['crop_size'],self.config['dataset']['crop_size'], DDP_device=DDP_device)
            print('-----------------------------------------------')

    def set_requires_grad(self, nets, requires_grad=False):
        """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
        Parameters:
            nets (network list)   -- a list of networks
            requires_grad (bool)  -- whether the networks require gradients or not
        """
        if not isinstance(nets, list):
            nets = [nets]
        for net in nets:
            if net is not None:
                for param in net.parameters():
                    param.requires_grad = requires_grad