File size: 10,398 Bytes
c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 04457d0 c1e9b4d 04457d0 c1e9b4d 0f5db8a c1e9b4d 1639827 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d 0f5db8a c1e9b4d f812e8e aa2ce12 f812e8e aa2ce12 f812e8e c1e9b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import matplotlib.patches as mpatches
import mplcursors
import json
from typing import Dict, Tuple, Any, NamedTuple, Optional
from enum import Enum
class NodeType(Enum):
USER = "User"
SUBJECT = "Subject"
GRADE_LEVEL = "Grade Level"
LEARNING_OBJECTIVE = "Learning Objective"
ACTIVITY = "Activity"
ASSESSMENT = "Assessment"
RESOURCE = "Resource"
SCHOOL_BOARD = "School Board"
COUNTRY_AUTHORITY = "Country Authority" # New NodeType
class ResetState(NamedTuple):
teacher_name: str
subject: str
grade_level: str
learning_objective: str
activity: str
assessment: str
resource: str
school_board: str
country_authority: str # New field
message: str
class LessonGraph:
INITIAL_STATE: Dict[str, str] = {
"teacher_name": "",
"subject": "",
"grade_level": "",
"learning_objective": "",
"activity": "",
"assessment": "",
"resource": "",
"school_board": "",
"country_authority": "" # New field
}
REQUIRED_FIELDS = ["teacher_name", "subject", "grade_level"]
COLOR_MAP: Dict[NodeType, str] = {
NodeType.USER: "#FF9999",
NodeType.SUBJECT: "#66B2FF",
NodeType.GRADE_LEVEL: "#99FF99",
NodeType.LEARNING_OBJECTIVE: "#FFCC99",
NodeType.ACTIVITY: "#FF99FF",
NodeType.ASSESSMENT: "#FFFF99",
NodeType.RESOURCE: "#99FFFF",
NodeType.SCHOOL_BOARD: "#CCCCCC",
NodeType.COUNTRY_AUTHORITY: "#FFA07A" # New color for Country Authority
}
def __init__(self):
self.graph = nx.DiGraph()
self.inputs = self.INITIAL_STATE.copy()
def validate_required_fields(self):
"""
Validate that all required fields are filled.
Raises a ValueError if any required field is empty.
"""
missing_fields = [field for field in self.REQUIRED_FIELDS if not self.inputs.get(field)]
if missing_fields:
raise ValueError(f"The following required fields are missing: {', '.join(missing_fields)}")
def add_lesson_plan(self, **kwargs) -> Tuple[str, Image.Image]:
"""
Add nodes and edges to the lesson plan graph for the given inputs.
Returns a search string and the graph image.
"""
self.graph.clear()
self.inputs.update(kwargs)
self.validate_required_fields()
# Define required nodes
nodes = {
self.inputs["teacher_name"]: {"type": NodeType.USER, "role": "Teacher"},
self.inputs["subject"]: {"type": NodeType.SUBJECT, "description": "Core subject area"},
self.inputs["grade_level"]: {"type": NodeType.GRADE_LEVEL, "description": "Target grade for the lesson"},
}
# Include country authority if provided
if self.inputs.get("country_authority"):
nodes[self.inputs["country_authority"]] = {
"type": NodeType.COUNTRY_AUTHORITY,
"description": "Sets national curriculum standards"
}
# Optional nodes
optional_nodes = {
"school_board": NodeType.SCHOOL_BOARD,
"learning_objective": NodeType.LEARNING_OBJECTIVE,
"activity": NodeType.ACTIVITY,
"assessment": NodeType.ASSESSMENT,
"resource": NodeType.RESOURCE
}
for field, node_type in optional_nodes.items():
if self.inputs.get(field):
nodes[self.inputs[field]] = {"type": node_type, "description": f"{node_type.value}"}
# Add nodes to the graph
for node, attributes in nodes.items():
self.graph.add_node(node, **attributes)
# Define relationships between nodes
edges = [
(self.inputs["teacher_name"], self.inputs["subject"], {"relationship": "TEACHES"}),
(self.inputs["subject"], self.inputs["grade_level"], {"relationship": "HAS_GRADE"})
]
# Relationships involving country authority
if self.inputs.get("country_authority"):
if self.inputs.get("learning_objective"):
edges.append((self.inputs["country_authority"], self.inputs["learning_objective"], {"relationship": "DEFINES"}))
if self.inputs.get("school_board"):
edges.append((self.inputs["country_authority"], self.inputs["school_board"], {"relationship": "OVERSEES"}))
# Existing optional edges
if self.inputs.get("learning_objective"):
edges.append((self.inputs["subject"], self.inputs["learning_objective"], {"relationship": "COVERS"}))
if self.inputs.get("school_board"):
edges.append((self.inputs["learning_objective"], self.inputs["school_board"], {"relationship": "ALIGNS_WITH"}))
if self.inputs.get("activity") and self.inputs.get("learning_objective"):
edges.append((self.inputs["activity"], self.inputs["learning_objective"], {"relationship": "ACHIEVES"}))
if self.inputs.get("activity") and self.inputs.get("resource"):
edges.append((self.inputs["activity"], self.inputs["resource"], {"relationship": "REQUIRES"}))
if self.inputs.get("learning_objective") and self.inputs.get("assessment"):
edges.append((self.inputs["learning_objective"], self.inputs["assessment"], {"relationship": "EVALUATED_BY"}))
if self.inputs.get("school_board"):
edges.append((self.inputs["teacher_name"], self.inputs["school_board"], {"relationship": "BELONGS_TO"}))
# Remove None entries from edges list
edges = [edge for edge in edges if edge is not None]
self.graph.add_edges_from(edges)
# Generate the search string for content discovery
search_string = f"{self.inputs['subject']} {self.inputs['grade_level']} {self.inputs.get('learning_objective', '')} {self.inputs.get('activity', '')} {self.inputs.get('resource', '')}".strip()
# Get the graph image
image = self.draw_graph()
return search_string, image
def draw_graph(self) -> Image.Image:
"""
Visualize the graph using Matplotlib, handling layout, labels, and interactivity.
"""
fig, ax = plt.subplots(figsize=(14, 10))
pos = nx.spring_layout(self.graph, k=1.2, iterations=100)
self._draw_nodes(ax, pos)
self._draw_edges(ax, pos)
self._add_legend(ax)
plt.title("Your Educational Landscape", fontsize=16)
plt.axis('off')
plt.tight_layout()
self._add_interactivity()
# Save the plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format="png", dpi=300, bbox_inches="tight", pad_inches=0.5)
buf.seek(0)
plt.close(fig)
return Image.open(buf)
def _draw_nodes(self, ax, pos):
node_colors = [self.COLOR_MAP[self.graph.nodes[node]['type']] for node in self.graph.nodes()]
nx.draw_networkx_nodes(self.graph, pos, node_color=node_colors, node_size=3000, alpha=0.8, ax=ax)
nx.draw_networkx_labels(self.graph, pos, font_size=10, font_weight="bold", ax=ax)
def _draw_edges(self, ax, pos):
nx.draw_networkx_edges(self.graph, pos, edge_color='gray', arrows=True, arrowsize=20, ax=ax)
edge_labels = nx.get_edge_attributes(self.graph, 'relationship')
nx.draw_networkx_edge_labels(self.graph, pos, edge_labels=edge_labels, font_size=8, ax=ax)
def _add_legend(self, ax):
legend_elements = [mpatches.Patch(color=color, label=node_type.value) for node_type, color in self.COLOR_MAP.items()]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(1, 1), title="Node Types")
def _add_interactivity(self):
cursor = mplcursors.cursor(hover=True)
@cursor.connect("add")
def on_add(sel):
node = list(self.graph.nodes())[sel.target.index]
node_data = self.graph.nodes[node]
sel.annotation.set_text(f"Node: {node}\nType: {node_data['type'].value}\n{node_data.get('description', '')}")
def reset_state(self) -> ResetState:
"""
Resets all input states to their default values and clears the graph.
Returns a named tuple of the cleared input values and a status message.
"""
self.inputs = self.INITIAL_STATE.copy()
self.graph.clear()
return ResetState(**self.inputs, message="Landscape cleared. You can start a new lesson plan.")
def graph_to_json(self) -> str:
"""
Converts the current lesson plan graph into a JSON string format and returns the result.
"""
try:
graph_data = {
"nodes": [
{
"id": node,
"type": self.graph.nodes[node]["type"].value,
"description": self.graph.nodes[node].get("description", "")
}
for node in self.graph.nodes()
],
"edges": [
{
"source": u,
"target": v,
"relationship": self.graph.edges[u, v]["relationship"]
}
for u, v in self.graph.edges()
]
}
return json.dumps(graph_data, indent=4)
except (KeyError, TypeError) as e:
return f"An error occurred while converting the graph to JSON: {str(e)}"
def process_inputs(self, *args) -> Tuple[str, Optional[Image.Image]]:
"""
Process input arguments and create a lesson plan.
Returns a tuple of search string and graph image, or error message and None.
"""
try:
self.inputs.update(dict(zip(self.INITIAL_STATE.keys(), args)))
return self.add_lesson_plan(**self.inputs)
except ValueError as e:
return str(e), None
@property
def is_empty(self) -> bool:
"""Check if all inputs are empty."""
return all(value == "" for value in self.inputs.values())
def __repr__(self) -> str:
return f"LessonGraph(inputs={self.inputs}, graph_size={len(self.graph)})"
|