Spaces:
Sleeping
Sleeping
File size: 1,738 Bytes
0a17934 0199d44 31a0b27 6d11c81 31a0b27 c45b9d6 31a0b27 0a17934 31a0b27 759f312 31a0b27 0a17934 31a0b27 0a17934 31a0b27 0a17934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import pipeline, BartTokenizer, BartForConditionalGeneration
# Initialize the image classification pipeline
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
# Initialize the tokenizer and model for the generative text (GPT-like model)
model_name = "facebook/bart-large-cnn" # Example BART model for demonstration
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def generate_tweet(label):
# Generate a promotional tweet using a GPT-like model
prompt = f"Write a tweet about {label}:"
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(inputs, max_length=280, num_return_sequences=1)
tweet = tokenizer.decode(outputs[0], skip_special_tokens=True)
return tweet
def predict(image):
predictions = classifier(image)
# Sort predictions based on confidence and select the top one
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0]
label = top_prediction['label'].split(',')[0] # Clean up label if necessary
# Generate the tweet
tweet = generate_tweet(label)
return tweet
title = "Image Classifier to Generative Tweet"
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a creative promotional tweet about the top prediction using a generative text model."
input_component = gr.Image(type="pil", label="Upload an image here")
output_component = gr.Textbox(label="Generated Promotional Tweet")
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()
|