Spaces:
Sleeping
Sleeping
File size: 22,428 Bytes
d8bb2be aeb0b1f d8bb2be aeb0b1f d8bb2be aeb0b1f d8bb2be aeb0b1f d8bb2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import torch
import asyncio
from torch.utils.data import DataLoader
import os
import uuid
import base64
from io import BytesIO
from PIL import Image
from pdf2image import pdf2image
from typing import List, Union
from tqdm.auto import tqdm
from utils import *
from models import ColPali, ColPaliProcessor, get_lora_model, enable_lora
import qdrant_client
from qdrant_client.http import models as rest
from llamaindex_utils import ColPaliGemmaEmbedding, ColPaliRetriever, CustomFusionRetriever, CustomQueryEngine
from llama_index.llms.gemini import Gemini
from llama_index.core.tools import RetrieverTool
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def embed_imgs(model: ColPali,
processor: ColPaliProcessor,
input_imgs: List[Image.Image],
device: str = 'cpu') -> List[torch.Tensor]:
"""Generates embeddings given images.
Args:
model (ColPali): Main model
processor (ColPaliProcessor): Data Processor
input_imgs (List[Image.Image]): List of input images
device (str, optional): device to run model. Defaults to 'cpu'.
Returns:
List[torch.Tensor]: List of output embedings.
"""
colpali_model = model.to(device=device).eval()
dataloader = DataLoader(input_imgs,
batch_size=8,
shuffle=False,
num_workers=0,
collate_fn=lambda x: processor.process_images(x))
document_embeddings = []
with torch.no_grad():
for batch, model_inputs in tqdm(enumerate(dataloader)):
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
# Encode images
img_embeds = colpali_model(**model_inputs, kv_cache=None)
document_embeddings.extend(list(torch.unbind(img_embeds.to('cpu').to(torch.float32))))
return document_embeddings
def embed_queries(model: ColPali,
processor: ColPaliProcessor,
queries: List[str],
device: str = 'cpu') -> List[torch.Tensor]:
"""Generate embeddings given queries.
Args:
model (ColPali): Embedding model
processor (ColPaliProcessor): Data Processor
queries (List[str]): List of query strings
device (str, optional): Device to run model. Defaults to 'cpu'.
Returns:
List[torch.Tensor]: List of embeddings
"""
colpali_model = model.to(device=device).eval()
dataloader = DataLoader(queries,
batch_size=8,
shuffle=False,
num_workers=0,
collate_fn=lambda x: processor.process_queries(x))
queries_embeddings = []
with torch.no_grad():
for batch, model_inputs in tqdm(enumerate(dataloader)):
model_inputs = {k: v.to(device) for k, v in model_inputs.items()}
# Encode Queries
query_embeds = colpali_model(**model_inputs, kv_cache=None)
queries_embeddings.extend(torch.unbind(query_embeds.to('cpu').type(torch.float32)))
return queries_embeddings
def score_single_vectors(qs: List[torch.Tensor],
ps: List[torch.Tensor]) -> torch.FloatTensor:
"""Calculate similarity between 2 single vectors
Args:
qs (List[torch.Tensor]): First Embeddings
ps (List[torch.Tensor]): Second Embeddings
Returns:
torch.FloatTensor: Score Tensor
"""
assert len(qs) != 0 and len(ps) != 0
qs_stacked = torch.stack(qs)
ps_stacked = torch.stack(ps)
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
scores = scores.to(torch.float32)
return scores
def score_multi_vectors(qs: List[torch.Tensor],
ps: List[torch.Tensor],
batch_size: int = 8,
device: Union[torch.device|str] = "cpu") -> torch.FloatTensor:
"""Calculate MaxSim between 2 list of vectors.
Args:
qs (List[torch.Tensor]): List of query embeddings
ps (List[torch.Tensor]): List of document embeddings
batch_size (int, optional): Batch Size. Defaults to 8.
device (Union[torch.device | str], optional): Device to cast tensor to. Defaults to "cpu".
Returns:
torch.FloatTensor: Score tensors.
"""
assert len(qs) != 0 and len(ps) != 0
scores_list = []
for i in range(0, len(qs), batch_size):
scores_batch = []
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i:i+batch_size], batch_first=True, padding_value=0).to(device)
for j in range(0, len(ps), batch_size):
ps_batch = torch.nn.utils.rnn.pad_sequence(ps[j:j+batch_size], batch_first=True, padding_value=0).to(device)
tmp = torch.einsum("abd,ced->acbe", qs_batch, ps_batch).max(dim=-1)[0].sum(dim=2)
scores_batch.append(tmp)
scores_batch = torch.cat(scores_batch, dim=1).cpu()
scores_list.append(scores_batch)
scores = torch.cat(scores_list, dim=0)
return scores.to(torch.float32)
def indexDocument(file_path: str,
vector_store_client,
target_collection: str,
model: nn.Module,
processor: ColPaliProcessor,
device: Union[str|torch.device]) -> None:
"""Index document given file_path.
Each page in document is embedded by ColPaliGemma Model, then insert into Qdrant vector store given target collection.
Creates taret collection if it is not created in the vector store yet.
Args:
file_path (str): _description_
vector_store_client (_type_): _description_
target_collection (str): _description_
model (nn.Module): _description_
processor (ColPaliProcessor): _description_
device (Union[str | torch.device]): _description_
"""
document_images = []
document_embeddings = []
document_images.extend(pdf2image.convert_from_path(file_path))
document_embeddings = embed_imgs(model=model,
processor=processor,
input_imgs=document_images,
device=device)
# Create Qdrant Collectioon
if not vector_store_client.collection_exists(collection_name=target_collection):
# Specify vectors_config
scalar_quant = rest.ScalarQuantizationConfig(
type=rest.ScalarType.INT8,
quantile=0.99,
always_ram=False
)
vector_params = rest.VectorParams(
size=128,
distance=rest.Distance.COSINE,
multivector_config=rest.MultiVectorConfig(
comparator=rest.MultiVectorComparator.MAX_SIM
),
quantization_config=rest.ScalarQuantization(
scalar=scalar_quant
),
)
vector_store_client.create_collection(
collection_name=target_collection,
on_disk_payload=True,
optimizers_config=rest.OptimizersConfigDiff(
indexing_threshold=100
),
vectors_config=vector_params
)
# Add embedding to Qdrant Collection
points = []
for i, embedding in enumerate(document_embeddings):
multivector = embedding.cpu().float().numpy().tolist()
buffer = BytesIO()
document_images[i].save(buffer, format='JPEG')
image_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
# Define payload
payload = {}
node_metadata = {"file_name": file_path,
"page_id": i + 1}
node_content = {'id_': str(uuid.uuid5(uuid.NAMESPACE_OID, name=(file_path + str(i + 1)))),
'image': image_str,
"metadata": node_metadata}
payload["_node_content"] = json.dumps(node_content)
payload["_node_type"] = "ImageNode"
# store ref doc id at top level to allow metadata filtering
# kept for backwards compatibility, will consolidate in future
payload["document_id"] = "None" # for Chroma
payload["doc_id"] = "None" # for Pinecone, Qdrant, Redis
payload["ref_doc_id"] = "None" # for Weaviate
points.append(rest.PointStruct(
id=node_content["id_"],
vector=multivector,
payload=payload,
))
step = 8
for i in range(0, len(points), step):
points_batch = points[i: i + step]
vector_store_client.upsert(collection_name=target_collection,
points=points_batch,
wait=False)
async def async_indexDocument(file_path: str,
vector_store_client: qdrant_client.AsyncQdrantClient,
target_collection: str,
model: nn.Module,
processor: ColPaliProcessor,
device: Union[str|torch.device]) -> None:
"""Asynchrously index document given file_path.
Each page in document is embedded by ColPaliGemma Model, then insert into Qdrant vector store given target collection.
Creates taret collection if it is not created in the vector store yet.
Args:
file_path (str): _description_
vector_store_client (_type_): _description_
target_collection (str): _description_
model (nn.Module): _description_
processor (ColPaliProcessor): _description_
device (Union[str | torch.device]): _description_
"""
document_images = []
document_embeddings = []
document_images.extend(pdf2image.convert_from_path(file_path))
document_embeddings = embed_imgs(model=model,
processor=processor,
input_imgs=document_images,
device=device)
# Create Qdrant Collectioon
if not await vector_store_client.collection_exists(collection_name=target_collection):
# Specify vectors_config
scalar_quant = rest.ScalarQuantizationConfig(
type=rest.ScalarType.INT8,
quantile=0.99,
always_ram=False
)
vector_params = rest.VectorParams(
size=128,
distance=rest.Distance.COSINE,
multivector_config=rest.MultiVectorConfig(
comparator=rest.MultiVectorComparator.MAX_SIM
),
quantization_config=rest.ScalarQuantization(
scalar=scalar_quant
),
)
await vector_store_client.create_collection(
collection_name=target_collection,
on_disk_payload=True,
optimizers_config=rest.OptimizersConfigDiff(
indexing_threshold=100
),
vectors_config=vector_params
)
# Add embedding to Qdrant Collection
points = []
for i, embedding in enumerate(document_embeddings):
multivector = embedding.cpu().float().numpy().tolist()
buffer = BytesIO()
document_images[i].save(buffer, format='JPEG')
image_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
# Define payload
payload = {}
node_metadata = {"file_name": file_path,
"page_id": i + 1}
node_content = {'id_': str(uuid.uuid5(uuid.NAMESPACE_OID, name=(file_path + str(i + 1)))),
'image': image_str,
"metadata": node_metadata}
payload["_node_content"] = json.dumps(node_content)
payload["_node_type"] = "ImageNode"
# store ref doc id at top level to allow metadata filtering
# kept for backwards compatibility, will consolidate in future
payload["document_id"] = "None" # for Chroma
payload["doc_id"] = "None" # for Pinecone, Qdrant, Redis
payload["ref_doc_id"] = "None" # for Weaviate
points.append(rest.PointStruct(
id=node_content["id_"],
vector=multivector,
payload=payload,
))
step = 8
for i in range(0, len(points), step):
points_batch = points[i: i + step]
await vector_store_client.upsert(collection_name=target_collection,
points=points_batch,
wait=False)
GEMINI_API_KEY = os.getenv(key="GEMINI_API_KEY")
def main():
model = ColPali.from_pretrained(model_dir='./pretrained/colpaligemma-3b-mix-448-base', torch_dtype=torch.bfloat16)
tokenizer = load_tokenizer(tokenizer_dir='./pretrained/colpaligemma-3b-mix-448-base')
processor = ColPaliProcessor(tokenizer=tokenizer).from_pretrained(pretrained_dir='./pretrained/colpaligemma-3b-mix-448-base')
model.model.language_model.model = get_lora_model(model.model.language_model.model,
rank=32,
alphas=32,
lora_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'down_proj', 'gate_proj', 'up_proj'],
training=False,
dropout_p=0.1,
torch_dtype=torch.bfloat16)
model.model.language_model.model = enable_lora(model.model.language_model.model, lora_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'down_proj', 'gate_proj', 'up_proj'], enabled=True)
model = get_lora_model(model,
rank=32,
alphas=32,
lora_modules=['custom_text_proj'],
training=False,
dropout_p=0.1,
torch_dtype=torch.bfloat16)
model = enable_lora(model, lora_modules=['custom_text_proj'], enabled=True)
model.load_lora('./pretrained/colpaligemma-3b-mix-448-base')
# Initialize LLM
generation_config = {
"temperature": 0.0,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 1024,
"response_mime_type": "text/plain",
}
llm = Gemini(api_key=GEMINI_API_KEY, generation_config=generation_config)
# Setup Qdrant
# Creating Qdrant Client
vector_store_client = qdrant_client.QdrantClient(location="http://localhost:6333", timeout=100)
indexDocument('./data/pdfs-financial/Alphabet_Inc_goog-10-q-q1-2024.pdf',
vector_store_client=vector_store_client,
target_collection="Alphabet",
model=model,
processor=processor,
device='mps')
indexDocument('./data/pdfs-financial/Nvidia_ecefb2b2-efcb-45f3-b72b-212d90fcd873.pdf',
vector_store_client=vector_store_client,
target_collection="Nvidia",
model=model,
processor=processor,
device='mps')
# RAG using LLamaIndex
embed_model = ColPaliGemmaEmbedding(model=model, processor=processor, device="mps")
alphabet_retriever = ColPaliRetriever(vector_store_client=vector_store_client,
target_collection="Alphabet",
embed_model=embed_model,
query_mode='default',
similarity_top_k=3)
nvidia_retriever = ColPaliRetriever(vector_store_client=vector_store_client,
target_collection="Nvidia",
embed_model=embed_model,
query_mode='default',
similarity_top_k=3)
# Query Router Among Multiple Retrievers
retriever_tools = [
RetrieverTool.from_defaults(
name="alphabet",
retriever=alphabet_retriever,
description="Useful for retrieving information about Alphabet Inc financials"
),
RetrieverTool.from_defaults(
name="nvidia",
retriever=nvidia_retriever,
description="Useful for retrieving information about Nvidia financials"
)
]
retriever_mappings = {retriever_tool.metadata.name: retriever_tool.retriever for retriever_tool in retriever_tools}
fusion_retriever = CustomFusionRetriever(llm=llm,
retriever_mappings=retriever_mappings,
num_generated_queries=3,
similarity_top_k=3)
query_engine = CustomQueryEngine(retriever_tools=[retriever_tool.metadata for retriever_tool in retriever_tools],
fusion_retriever=fusion_retriever,
llm=llm,
num_children=3)
query_str = "Compare the net income between Nvidia and Alphabet"
response = query_engine.query(query_str=query_str)
print(response.response)
async def amain():
model = ColPali.from_pretrained(model_dir='./pretrained/colpaligemma-3b-mix-448-base', torch_dtype=torch.bfloat16)
tokenizer = load_tokenizer(tokenizer_dir='./pretrained/colpaligemma-3b-mix-448-base')
processor = ColPaliProcessor(tokenizer=tokenizer).from_pretrained(pretrained_dir='./pretrained/colpaligemma-3b-mix-448-base')
model.model.language_model.model = get_lora_model(model.model.language_model.model,
rank=32,
alphas=32,
lora_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'down_proj', 'gate_proj', 'up_proj'],
training=False,
dropout_p=0.1,
torch_dtype=torch.bfloat16)
model.model.language_model.model = enable_lora(model.model.language_model.model, lora_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'down_proj', 'gate_proj', 'up_proj'], enabled=True)
model = get_lora_model(model,
rank=32,
alphas=32,
lora_modules=['custom_text_proj'],
training=False,
dropout_p=0.1,
torch_dtype=torch.bfloat16)
model = enable_lora(model, lora_modules=['custom_text_proj'], enabled=True)
model.load_lora('./pretrained/colpaligemma-3b-mix-448-base')
# Initialize LLM
generation_config = {
"temperature": 0.0,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 1024,
"response_mime_type": "text/plain",
}
llm = Gemini(api_key=GEMINI_API_KEY, generation_config=generation_config)
# Setup Qdrant
# Creating Qdrant Client
vector_store_client = qdrant_client.AsyncQdrantClient(location="http://localhost:6333", timeout=100)
await async_indexDocument('./data/pdfs-financial/Alphabet_Inc_goog-10-q-q1-2024.pdf',
vector_store_client=vector_store_client,
target_collection="Alphabet",
model=model,
processor=processor,
device='mps')
await async_indexDocument('./data/pdfs-financial/Nvidia_ecefb2b2-efcb-45f3-b72b-212d90fcd873.pdf',
vector_store_client=vector_store_client,
target_collection="Nvidia",
model=model,
processor=processor,
device='mps')
embed_model = ColPaliGemmaEmbedding(model=model, processor=processor, device="mps")
alphabet_retriever = ColPaliRetriever(vector_store_client=vector_store_client,
target_collection="Alphabet",
embed_model=embed_model,
query_mode='default',
similarity_top_k=3)
nvidia_retriever = ColPaliRetriever(vector_store_client=vector_store_client,
target_collection="Nvidia",
embed_model=embed_model,
query_mode='default',
similarity_top_k=3)
# Query Router Among Multiple Retrievers
retriever_tools = [
RetrieverTool.from_defaults(
name="alphabet",
retriever=alphabet_retriever,
description="Useful for retrieving information about Alphabet Inc financials"
),
RetrieverTool.from_defaults(
name="nvidia",
retriever=nvidia_retriever,
description="Useful for retrieving information about Nvidia financials"
)
]
retriever_mappings = {retriever_tool.metadata.name: retriever_tool.retriever for retriever_tool in retriever_tools}
fusion_retriever = CustomFusionRetriever(llm=llm,
retriever_mappings=retriever_mappings,
similarity_top_k=3)
query_engine = CustomQueryEngine(retriever_tools=[retriever_tool.metadata for retriever_tool in retriever_tools],
fusion_retriever=fusion_retriever,
llm=llm,
num_children=3)
query_str = "Compare the net income between Nvidia and Alphabet"
response = await query_engine.aquery(query_str=query_str)
print(str(response))
if __name__ == "__main__":
main() |