File size: 6,342 Bytes
d8bb2be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Optional

@dataclass
class SigLIPConfig:
    hidden_size: int = 1152
    intermediate_size: int = 4304
    num_attention_heads: int = 16
    num_hidden_layers: int = 27
    num_image_tokens: int = 256
    patch_size: int = 14
    projection_dim: int = 2048
    n_channels: int = 3
    img_size: int = 224
    norm_eps: float = 1e-6
    attention_dropout: float = 0.0
    
    @classmethod
    def from_dict(cls, data):
        return cls(
            hidden_size = data['hidden_size'],
            intermediate_size = data['intermediate_size'],
            num_attention_heads = data['num_attention_heads'],
            num_hidden_layers = data['num_hidden_layers'],
            num_image_tokens = data['num_image_tokens'],
            patch_size = data['patch_size'],
            projection_dim = data['projection_dim']
        )

class SigLIPEmbedding(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.patch_embedding = nn.Conv2d(cfg.n_channels, cfg.hidden_size, kernel_size=cfg.patch_size, stride=cfg.patch_size, padding='valid')
        
        self.num_patches = (cfg.img_size // cfg.patch_size) ** 2
        self.position_embedding = nn.Embedding(cfg.num_image_tokens, cfg.hidden_size)
        
        self.register_buffer('position_ids',
                             torch.arange(cfg.num_image_tokens).expand(1, -1),
                             persistent=False)
    
    def forward(self, x: torch.FloatTensor):
        # x: (n, c, h, w) -> (n, c, num_patch_h, num_patch_w)
        img_embeds = self.patch_embedding(x)
        # (n, c, num_patch_h, num_patch_w) -> (n, c, num_patches) -> (n, num_patches, c)
        img_embeds = img_embeds.reshape(*img_embeds.shape[:2], -1).transpose(1, 2)
        return img_embeds + self.position_embedding(self.position_ids.to(torch.int64))

class SigLIPTransformerAttention(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.cfg = cfg
        self.num_attention_heads = cfg.num_attention_heads
        self.head_dim = cfg.hidden_size // self.num_attention_heads
        
        self.q_proj = nn.Linear(cfg.hidden_size, cfg.hidden_size)
        self.k_proj = nn.Linear(cfg.hidden_size, cfg.hidden_size)
        self.v_proj = nn.Linear(cfg.hidden_size, cfg.hidden_size)
        
        self.out_proj = nn.Linear(cfg.hidden_size, cfg.hidden_size)
        self.dropout_p = self.cfg.attention_dropout
        
    def forward(self, x: torch.Tensor, attention_mask: torch.Tensor):
        batch_size, num_patches, _ = x.shape
        
        xq = self.q_proj(x)
        xk = self.k_proj(x)
        xv = self.v_proj(x)
        
        xq = xq.view(batch_size, num_patches, self.num_attention_heads, self.head_dim).transpose(1, 2)
        xk = xk.view(batch_size, num_patches, self.num_attention_heads, self.head_dim).transpose(1, 2)
        xv = xv.view(batch_size, num_patches, self.num_attention_heads, self.head_dim).transpose(1, 2)
        
        # attn_weights = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
        
        # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(xq.dtype)
        
        # attn_output  = torch.matmul(attn_weights, xv)
        # attn_output = attn_output.transpose(1, 2).contiguous()
        # attn_output = attn_output.view(batch_size, num_patches, -1)
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query=xq,
            key=xk,
            value=xv,
            attn_mask=attention_mask,
            dropout_p=self.dropout_p,
            is_causal=False
        )
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(batch_size, num_patches, -1)
        attn_output = self.out_proj(attn_output)
        return attn_output, None
           
class SigLIPTransformerMLP(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.cfg = cfg
        
        self.fc1 = nn.Linear(cfg.hidden_size, cfg.intermediate_size)
        self.fc2 = nn.Linear(cfg.intermediate_size, cfg.hidden_size)
    
    def forward(self, x: torch.Tensor):
        
        x = self.fc1(x)
        x = F.gelu(x, approximate='tanh')
        x = self.fc2(x)
        return x

class SigLIPTransformerBlock(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.layer_norm1 = nn.LayerNorm(cfg.hidden_size, eps=cfg.norm_eps)
        self.layer_norm2 = nn.LayerNorm(cfg.hidden_size, eps=cfg.norm_eps)

        self.self_attn = SigLIPTransformerAttention(cfg)
        self.mlp = SigLIPTransformerMLP(cfg)
    
    def forward(self, x: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
        residual = x
        x = self.layer_norm1(x)
        x = residual + self.self_attn(x, attention_mask)[0]
        residual = x
        x = self.layer_norm2(x)
        x = residual + self.mlp(x)
        return x
    
class SigLIPTransformerEncoder(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        
        self.cfg = cfg
        self.layers = nn.ModuleList(
            [SigLIPTransformerBlock(cfg) for _ in range(cfg.num_hidden_layers)]
        )
    
    def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        for layer in self.layers:
            x = layer(x, attention_mask)
        return x
class SigLIPModel(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.embeddings = SigLIPEmbedding(cfg)
        self.encoder = SigLIPTransformerEncoder(cfg)
        self.post_layernorm = nn.LayerNorm(cfg.hidden_size, eps=cfg.norm_eps)
    
    def forward(self, x: torch.Tensor):
        img_embed = self.embeddings(x)
        output = self.encoder(img_embed)
        output = self.post_layernorm(output)
        return output
        
    
        
class SigLIPVisionTower(nn.Module):
    def __init__(self, cfg: SigLIPConfig):
        super().__init__()
        self.cfg = cfg
        self.vision_model = SigLIPModel(cfg)
    
    def forward(self, x: torch.Tensor):
        return self.vision_model(x)