Spaces:
Runtime error
Runtime error
File size: 24,459 Bytes
d8bb2be c0b2adc d8bb2be c0b2adc d8bb2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import torch
import json
import asyncio
import qdrant_client
from PIL import Image
from pydantic import PrivateAttr, Field
from typing import Union, Optional, List, Any, Dict, Set
from dataclasses import dataclass
from llama_index.core.vector_stores.types import VectorStoreQueryResult
from llama_index.core.vector_stores.utils import (
legacy_metadata_dict_to_node,
metadata_dict_to_node,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.retrievers import BaseRetriever
from llama_index.core import QueryBundle, PromptTemplate
from llama_index.core.schema import NodeWithScore, TextNode
from llama_index.core.llms import LLM
from llama_index.core.question_gen import LLMQuestionGenerator
from llama_index.core.tools import ToolMetadata
from llama_index.core.output_parsers.utils import parse_json_markdown
from llama_index.core.question_gen.types import SubQuestion
from models import ColPali, ColPaliProcessor
from prompt_templates import (DEFAULT_GEN_PROMPT_TMPL,
DEFAULT_FINAL_ANSWER_PROMPT_TMPL,
DEFAULT_SUB_QUESTION_PROMPT_TMPL,
DEFAULT_SYNTHESIZE_PROMPT_TMPL)
from typing import Any, List, Optional, Tuple, cast
from qdrant_client.http.models import Payload
from collections import defaultdict
def parse_to_query_result(response: List[Any]) -> VectorStoreQueryResult:
"""
Convert vector store response to VectorStoreQueryResult.
Args:
response: List[Any]: List of results returned from the vector store.
"""
nodes = []
similarities = []
ids = []
for point in response:
payload = cast(Payload, point.payload)
try:
node = metadata_dict_to_node(payload)
except Exception:
metadata, node_info, relationships = legacy_metadata_dict_to_node(
payload
)
node = TextNode(
id_=str(point.id),
text=payload.get("text"),
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)
nodes.append(node)
ids.append(str(point.id))
try:
similarities.append(point.score)
except AttributeError:
# certain requests do not return a score
similarities.append(1.0)
return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)
class ColPaliGemmaEmbedding(BaseEmbedding):
_model: ColPali = PrivateAttr()
_processor: ColPaliProcessor = PrivateAttr()
device: Union[torch.device | str] = Field(default="cpu",
description="Device to use")
def __init__(self,
model: ColPali,
processor: ColPaliProcessor,
device: Optional[str] = 'cpu',
**kwargs):
super().__init__(device=device,
**kwargs)
self._model = model.to(device).eval()
self._processor = processor
@classmethod
def class_name(cls) -> str:
return "ColPaliGemmaEmbedding"
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding.
Args:
query (str): Query String
"""
with torch.no_grad():
processed_query = self._processor.process_queries([query])
processed_query = {k: v.to(self.device) for k, v in processed_query.items()}
query_embeddings = self._model(**processed_query)
return query_embeddings.to('cpu')[0]
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding.
Args:
text (str): Text String
"""
with torch.no_grad():
processed_query = self._processor.process_queries([text])
processed_query = {k: v.to(self.device) for k, v in processed_query.items()}
query_embeddings = self._model(**processed_query)
return query_embeddings.to('cpu')[0]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings.
Args:
texts (List[str]): List of text string
"""
with torch.no_grad():
processed_queries = self._processor.process_queries(texts)
processed_query = {k: v.to(self.device) for k, v in processed_query.items()}
query_embeddings = self._model(**processed_queries)
return query_embeddings.to('cpu')
async def _aget_query_embedding(self, query: str) -> List[float]:
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
return self._get_text_embedding(text)
class ColPaliRetriever(BaseRetriever):
def __init__(self,
vector_store_client: Union[qdrant_client.QdrantClient | qdrant_client.AsyncQdrantClient],
target_collection: str,
embed_model: ColPaliGemmaEmbedding,
query_mode: str = 'default',
similarity_top_k: int = 3,
) -> None:
self._vector_store_client = vector_store_client
self._target_collection = target_collection
self._embed_model = embed_model
self._query_mode = query_mode
self._similarity_top_k = similarity_top_k
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Get retrived nodes from the vector store by retriever given query string.
Args:
query_bundle (QueryBundle): QueryBundle class includes query string
Returns:
List[NodeWithScore]: List of retrieved nodes.
"""
if query_bundle.embedding is None:
query_embedding = self._embed_model._get_query_embedding(query_bundle.query_str)
else:
query_embedding = query_bundle.embedding
query_embedding = query_embedding.cpu().float().numpy().tolist()
# Get nodes from vector store
response = self._vector_store_client.query_points(collection_name=self._target_collection,
query=query_embedding,
limit=self._similarity_top_k).points
# Parse to structured output nodes
query_result = parse_to_query_result(response)
nodes_with_scores = []
for idx, node in enumerate(query_result.nodes):
score = None
if query_result.similarities is not None:
score = query_result.similarities[idx]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
return nodes_with_scores
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Asynchronously get retrived nodes from the vector store by retriever given query string.
Args:
query_bundle (QueryBundle): QueryBundle class includes query string
Returns:
List[NodeWithScore]: List of retrieved nodes.
"""
if query_bundle.embedding is None:
query_embedding = await self._embed_model._aget_query_embedding(query_bundle.query_str)
else:
query_embedding = query_bundle.embedding
query_embedding = query_embedding.cpu().float().numpy().tolist()
# Get nodes from vector store
responses = await self._vector_store_client.query_points(collection_name=self._target_collection,
query=query_embedding,
limit=self._similarity_top_k)
responses = responses.points
# Parse to structured output nodes
query_result = parse_to_query_result(responses)
nodes_with_scores = []
for idx, node in enumerate(query_result.nodes):
score = None
if query_result.similarities is not None:
score = query_result.similarities[idx]
nodes_with_scores.append(NodeWithScore(node=node, score=score))
return nodes_with_scores
def fuse_results(retrieved_nodes: List[NodeWithScore], similarity_top_k: int) -> List[NodeWithScore]:
"""Fuse retrieved nodes using Reciprocal Rank
Args:
retrieved_nodes (List[NodeWithScore]): List of nodes.
similarity_top_k (int): get top K nodes.
Returns:
List[NodeWithScore]: List of nodes after fused
"""
k = 60.0
fused_scores = {}
text_to_node = {}
for rank, node_with_score in enumerate(sorted(retrieved_nodes, key=lambda x: x.score or 0.0, reverse=True)):
text = node_with_score.node.get_content(metadata_mode='all')
text_to_node[text] = node_with_score
fused_scores[text] = fused_scores.get(text, 0.0) + 1.0 / (rank + k)
# Sort results by calculated score
reranked_results = dict(sorted(fused_scores.items(), key=lambda x: x[1], reverse=True))
reranked_nodes: List[NodeWithScore] = []
for text, score in reranked_results.items():
reranked_nodes.append(text_to_node[text])
reranked_nodes[-1].score = score
return reranked_nodes[:similarity_top_k]
def generate_queries(llm: LLM, query: str, num_queries: int) -> List[str]:
"""Generate num_queries queries
Args:
llm (LLM): LLM model
query (str): query string
num_queries (int): Number of queries to generate
Returns:
generate_queries List[str]: List of generated queries
"""
query_prompt = PromptTemplate(DEFAULT_GEN_PROMPT_TMPL)
generate_queries = llm.predict(query_prompt,
num_queries=num_queries,
query=query)
generate_queries = generate_queries.split('\n')
return generate_queries
async def agenerate_queries(llm: LLM, query: str, num_queries: int):
"""Asynchronously generate num_queries queries
Args:
llm (LLM): LLM model
query (str): query string
num_queries (int): Number of queries to generate
Returns:
generate_queries List[str]: List of generated queries
"""
query_prompt = PromptTemplate(DEFAULT_GEN_PROMPT_TMPL)
generate_queries = await llm.apredict(query_prompt,
num_queries=num_queries,
query=query)
generate_queries = generate_queries.split('\n')
return generate_queries
# Tree Summarization
def synthesize_results(queries: List[SubQuestion], contexts: Dict[str, Set[str]], llm: LLM, num_children: int) -> Tuple[str, List[str]]:
"""Summarize the results generated from LLM.
Args:
queries (List[SubQuestion]): Generated results
contexts (Dict[str, Set[str]]): Dictionary maps context information string to its set of source images
llm (LLM): LLM Model
num_children (int): Number of children for Tree Summarization
Returns:
Tuple[str, List[str]]: Synthesized text, set of source images.
"""
qa_prompt = PromptTemplate(DEFAULT_SYNTHESIZE_PROMPT_TMPL)
new_contexts = defaultdict(set)
keys = list(contexts.keys())
for idx in range(0, len(keys), num_children):
contexts_batch = keys[idx: idx + num_children]
context_str = '\n\n'.join([f"{i + 1}. {text}" for i, text in enumerate(contexts_batch)])
fmt_qa_prompt = qa_prompt.format(context_str=context_str, query_str="\n".join([query.sub_question for query in queries]))
combined_result = llm.complete(fmt_qa_prompt)
# Parse json string to dictionary
json_dict = parse_json_markdown(str(combined_result))
if len(json_dict['choices']) > 0:
for choice in json_dict['choices']:
new_contexts[json_dict['summarized_text']] = new_contexts[json_dict['summarized_text']].union(contexts[contexts_batch[choice - 1]])
else:
new_contexts[json_dict['summarized_text']] = set()
if len(new_contexts) == 1:
synthesized_text = list(new_contexts.keys())[0]
return synthesized_text, list(new_contexts[synthesized_text])
else:
return synthesize_results(queries, new_contexts, llm, num_children=num_children)
async def asynthesize_results(queries: List[SubQuestion], contexts: Dict[str, Set[str]], llm: LLM, num_children: int) -> Union[str, List[str]]:
"""Asynchronously sumamarize the results generated from LLM.
Args:
queries (List[SubQuestion]): Generated results
contexts (Dict[str, Set[str]]): Dictionary maps context information string to its set of source images
llm (LLM): LLM Model
num_children (int): Number of children for Tree Summarization
Returns:
Tuple[str, List[str]]: Synthesized text, set of source images.
"""
qa_prompt = PromptTemplate(DEFAULT_SYNTHESIZE_PROMPT_TMPL)
fmt_qa_prompts = []
keys = list(contexts.keys())
contexts_batches = []
for idx in range(0, len(keys), num_children):
contexts_batch = keys[idx: idx + num_children]
context_str = '\n\n'.join([f"{idx + 1}. {text}" for idx, text in enumerate(contexts_batch)])
fmt_qa_prompt = qa_prompt.format(context_str=context_str, query_str="\n".join([query.sub_question for query in queries]))
fmt_qa_prompts.append(fmt_qa_prompt)
contexts_batches.append(contexts_batch)
tasks = []
async with asyncio.TaskGroup() as tg:
for fmt_qa_prompt in fmt_qa_prompts:
task = tg.create_task(llm.acomplete(fmt_qa_prompt))
tasks.append(task)
responses = [str(task.result()) for task in tasks]
new_contexts = defaultdict(set)
for idx, response in enumerate(responses):
# Parse json string to dictionary
json_dict = parse_json_markdown(response)
if len(json_dict["choices"]) > 0:
for choice in json_dict["choices"]:
new_contexts[json_dict["summarized_text"]] = new_contexts[json_dict["summarized_text"]].union(contexts[contexts_batches[idx][choice - 1]])
else:
new_contexts[json_dict["summarized_text"]] = set()
if len(new_contexts) == 1:
synthesized_text = list(new_contexts.keys())[0]
return synthesized_text, list(new_contexts[synthesized_text])
else:
return await asynthesize_results(queries, new_contexts, llm, num_children=num_children)
class CustomFusionRetriever(BaseRetriever):
def __init__(self,
llm,
retriever_mappings: Dict[str, BaseRetriever],
similarity_top_k: int = 3,
num_generated_queries = 3,
) -> None:
self._retriever_mappings = retriever_mappings
self._similarity_top_k = similarity_top_k
self._num_generated_queries = num_generated_queries
self._llm = llm
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve self._similarity_top_k content nodes given query
Args:
query_bundle (QueryBundle): query bundle include query string
"""
# Get data from query bundle
query_dict = json.loads(query_bundle.query_str)
original_query = query_dict['sub_question']
tool_name = query_dict['tool_name']
# Rewrite original query to n queries
generated_queries = generate_queries(self._llm, original_query, num_queries=self._num_generated_queries)
# For each generated query, retrieve relevant nodes
retrieved_nodes = []
for query in generated_queries:
if len(query) == 0:
continue
retrieved_nodes.extend(self._retriever_mappings[tool_name].retrieve(query))
# Fuse retrieved nodes using reciprocal rank
fused_results = fuse_results(retrieved_nodes,
similarity_top_k=self._similarity_top_k)
return fused_results
async def _aretrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Asynchronously retrieve self._similarity_top_k content nodes given query
Args:
query_bundle (QueryBundle): query bundle include query string
"""
# Get data from query bundle
query_dict = json.loads(query_bundle.query_str)
original_query = query_dict['sub_question']
tool_name = query_dict['tool_name']
# Rewrite original query to n queries
generated_queries = await agenerate_queries(llm=self._llm, query=original_query, num_queries=self._num_generated_queries)
# For each generated query, retrieve relevant nodes
tasks = []
async with asyncio.TaskGroup() as tg:
for query in generated_queries:
if len(query) == 0:
continue
task = tg.create_task(self._retriever_mappings[tool_name].aretrieve(query))
tasks.append(task)
retrieved_nodes = [node for task in tasks for node in task.result()]
# Fuse retrieved nodes using reciprocal rank
fused_results = fuse_results(retrieved_nodes,
similarity_top_k=self._similarity_top_k)
return fused_results
@dataclass
class Response:
response: str
source_images: Optional[List] = None
def __str__(self):
return self.response
class CustomQueryEngine:
def __init__(self,
retriever_tools: List[ToolMetadata],
fusion_retriever: BaseRetriever,
qa_prompt: PromptTemplate = None,
llm: LLM = None,
num_children: int = 3):
self._qa_prompt = qa_prompt if qa_prompt else PromptTemplate(DEFAULT_FINAL_ANSWER_PROMPT_TMPL)
self._llm = llm
self._num_children = num_children
self._sub_question_generator = LLMQuestionGenerator.from_defaults(llm=self._llm,
prompt_template_str=DEFAULT_SUB_QUESTION_PROMPT_TMPL)
self._fusion_retriever = fusion_retriever
self._retriever_tools = retriever_tools
def query(self, query_str: str) -> Response:
# Generate sub queries
sub_queries = self._sub_question_generator.generate(tools=self._retriever_tools,
query=QueryBundle(query_str=query_str))
if len(sub_queries) == 0:
response_template = PromptTemplate("Cannot answer the query: {query_str}")
return Response(response=response_template.format(query_str=query_str), source_images=[])
else:
# Dictionary to map response -> source_images
response2images_mapping = defaultdict(set)
# For each sub queries retrieve relevant image nodes
# With fusion retriever, each sub query is rewritten to n queries -> retrieve relevant nodes for each generated query
# -> fuse all nodes retrieved from multiple generated queries using reciprocal rank -> get top k results
for sub_query in sub_queries:
retrieved_nodes = self._fusion_retriever.retrieve(QueryBundle(query_str=sub_query.model_dump_json()))
# Using LLM to get the answer for sub query from retrieved nodes
for retrieved_node in retrieved_nodes:
response2images_mapping[str(self._llm.complete([sub_query.sub_question, Image.open(retrieved_node.node.resolve_image())]))].add(retrieved_node.node.image)
# Synthesize results
synthesized_text, source_images = synthesize_results(queries=sub_queries,
contexts=response2images_mapping,
llm=self._llm,
num_children=self._num_children)
final_answer = self._llm.predict(self._qa_prompt,
context_str=synthesized_text,
query_str=query_str)
response_template = PromptTemplate("Retrieved Information:\n"
"------------------------\n"
"{retrieved_information}\n"
"-------------------------\n\n"
"Answer:\n"
"{final_answer}")
return Response(response=response_template.format(retrieved_information=synthesized_text, final_answer=final_answer), source_images=source_images)
async def aquery(self, query_str: str):
sub_queries = await self._sub_question_generator.agenerate(tools=self._retriever_tools,
query=QueryBundle(query_str=query_str))
if len(sub_queries) == 0:
response_template = PromptTemplate("Cannot answer the query: {query_str}")
return Response(response=response_template.format(query_str=query_str), source_images=[])
else:
retrieved_subquestion_nodes = []
async with asyncio.TaskGroup() as tg:
for sub_query in sub_queries:
task = tg.create_task(self._fusion_retriever.aretrieve(QueryBundle(query_str=sub_query.model_dump_json())))
retrieved_subquestion_nodes.append([sub_query.sub_question, task])
retrieved_subquestion_nodes = [[sub_question, task.result()] for sub_question, task in retrieved_subquestion_nodes]
answers = []
# For each sub queries retrieve relevant image nodes
# With fusion retriever, each sub query is rewritten to n queries -> retrieve relevant nodes for each generated query
# -> fuse all nodes retrieved from multiple generated queries using reciprocal rank -> get top k results
async with asyncio.TaskGroup() as tg:
for sub_question, retrieved_nodes in retrieved_subquestion_nodes:
for retrieved_node in retrieved_nodes:
task = tg.create_task(self._llm.acomplete([sub_question, Image.open(retrieved_node.node.resolve_image())]))
answers.append([task, retrieved_node.node.image])
# Dictionary to map response -> source_images
response2images_mapping = defaultdict(set)
for task, image in answers:
response2images_mapping[str(task.result())].add(image)
# Synthesize results
synthesized_text, source_images = await asynthesize_results(queries=sub_queries,
contexts=response2images_mapping,
llm=self._llm,
num_children=self._num_children)
final_answer = await self._llm.apredict(self._qa_prompt,
context_str=synthesized_text,
query_str=query_str)
response_template = PromptTemplate("Retrieved Information:\n"
"------------------------\n"
"{retrieved_information}\n"
"-------------------------\n\n"
"Answer:\n"
"{final_answer}")
return Response(response=response_template.format(retrieved_information=synthesized_text, final_answer=final_answer), source_images=source_images)
|