Spaces:
Runtime error
Runtime error
File size: 11,132 Bytes
d8bb2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as parametrize
from dataclasses import dataclass
from typing import Optional, List
import math
import torch.utils.checkpoint as checkpoint
@dataclass
class GemmaConfig:
hidden_size: int = 2048
intermediate_size: int = 16384
num_attention_heads: int = 8
num_hidden_layers: int = 18
num_image_tokens: int = 256
num_key_value_heads: int = 1
vocab_size: int = 257216
norm_eps: float = 1e-6
max_seq_len: int = 8192
attention_dropout: float = 0.0
use_lora: bool = False
training: bool = False
@classmethod
def from_dict(cls, data):
return cls(
hidden_size = data['hidden_size'],
intermediate_size = data['intermediate_size'],
num_attention_heads = data['num_attention_heads'],
num_hidden_layers = data['num_hidden_layers'],
num_image_tokens = data['num_image_tokens'],
num_key_value_heads = data['num_key_value_heads'],
vocab_size = data['vocab_size'],
training = data['training'])
class RMSNorm(nn.Module):
def __init__(self, dim: int, norm_eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.zeros(dim))
self.norm_eps = norm_eps
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.norm_eps)
def forward(self, x: torch.Tensor):
output = self._norm(x.float())
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def precompute_freqs(head_dim: int, max_seq_len: int, theta: int = 10000):
thetas = 1 / (theta ** (torch.arange(0, head_dim, 2, dtype=torch.int64).float() / head_dim))
m = torch.arange(max_seq_len, dtype=torch.long)
# (max_seq_len, head_dim // 2)
freqs = torch.outer(m, thetas)
# (max_seq_len, head_dim // 2) -> (max_seq_len, head_dim)
freqs = torch.cat((freqs, freqs), dim=-1)
return freqs
def roate_half(x: torch.Tensor):
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_embed(x: torch.Tensor,
freqs: torch.Tensor):
# x: (n, n_heads, seq_len, head_dim)
# freqs: (n, seq_len, head_dim)
device_type = x.device.type
device_type = device_type if device_type != 'mps' else 'cpu'
with torch.autocast(device_type=device_type, enabled=False):
cos = freqs.cos()
sin = freqs.sin()
while len(cos.shape) < len(x.shape):
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
cos = cos.to(x.dtype)
sin = sin.to(x.dtype)
x = (x * cos) + (roate_half(x) * sin)
return x
class KVCache:
def __init__(self):
self.cache_k: List[torch.Tensor] = []
self.cache_v: List[torch.Tensor] = []
def num_items(self):
if len(self.cache_k) == 0:
return 0
else:
# (n, num_heads, seq_len, head_dim)
return self.cache_k[0].shape[-2]
def update(self, xk, xv, layer_idx):
if layer_idx < len(self.cache_k):
self.cache_k[layer_idx] = torch.cat((self.cache_k[layer_idx], xk), dim=-2)
self.cache_v[layer_idx] = torch.cat((self.cache_v[layer_idx], xv), dim=-2)
else:
self.cache_k.append(xk)
self.cache_v.append(xv)
return self.cache_k[layer_idx], self.cache_v[layer_idx]
class GemmaTransformerAttention(nn.Module):
def __init__(self, cfg: GemmaConfig, layer_idx: int):
super().__init__()
self.cfg = cfg
self.layer_idx = layer_idx
self.vocab_size = cfg.vocab_size
self.hidden_size = cfg.hidden_size
self.num_attention_heads = cfg.num_attention_heads
self.num_key_value_heads = cfg.num_key_value_heads
self.max_seq_len = cfg.max_seq_len
assert self.hidden_size % self.num_attention_heads == 0
self.n_rep =self.num_attention_heads // self.num_key_value_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.attn_dropout = cfg.attention_dropout
self.training = cfg.training
self.register_buffer('freqs',
precompute_freqs(self.head_dim, cfg.max_seq_len),
persistent=False)
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None):
batch_size, seq_len, embed_dim = x.shape
xq = self.q_proj(x)
xk = self.k_proj(x)
xv = self.v_proj(x)
# (n, seq_len, hidden_size) -> (n, seq_len, num_heads, head_dim) -> (n, num_heads, seq_len, head_dim)
xq = xq.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
# (n, seq_len, hidden_size) -> (n, seq_len, num_kv_heads, head_dim) -> (n, num_kv_heads, seq_len, head_dim)
xk = xk.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
xv = xv.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
xq = apply_rotary_embed(xq, self.freqs[position_ids, :])
xk = apply_rotary_embed(xk, self.freqs[position_ids, :])
if kv_cache is not None:
keys, values = kv_cache.update(xk, xv, self.layer_idx)
else:
keys, values = xk, xv
# (n, num_kv_heads, seq_len, head_dim) -> (n, num_kv_heads * n_rep, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim)
keys = keys[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim)
values = values[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim)
assert attention_mask is not None
# (n, num_heads, seq_len, head_dim) @ (n, num_heads, head_dim, seq_len) -> (n, num_heads, seq_len, seq_len)
attn_weights = torch.softmax(xq @ keys.transpose(2, 3) / math.sqrt(self.head_dim) + attention_mask, dim=-1)
# dropout when training
attn_weights = F.dropout(attn_weights, p=self.attn_dropout, training=self.training)
# (n, num_heads, seq_len, seq_len) @ (n, num_heads, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim)
attn_output = attn_weights @ values
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(*x.shape)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GemmaTransformerMLP(nn.Module):
def __init__(self, cfg: GemmaConfig):
super().__init__()
self.cfg = cfg
self.down_proj = nn.Linear(cfg.intermediate_size, cfg.hidden_size, bias=False)
self.gate_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False)
self.up_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False)
def forward(self, x: torch.Tensor):
return self.down_proj(F.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x))
class GemmaTransformerDecoder(nn.Module):
def __init__(self, cfg: GemmaConfig, layer_idx: int) -> None:
super().__init__()
self.cfg = cfg
self.input_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
self.self_attn = GemmaTransformerAttention(cfg, layer_idx)
self.mlp = GemmaTransformerMLP(cfg)
self.post_attention_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
self.gradient_checking = False
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None):
residual = x
x = self.input_layernorm(x)
if self.gradient_checking:
x = checkpoint.checkpoint(self.self_attn, x, position_ids, attention_mask, kv_cache)
else:
x = self.self_attn(x,
position_ids,
attention_mask,
kv_cache)[0]
x += residual
residual = x
x = self.post_attention_layernorm(x)
x = residual + self.mlp(x)
return x
class GemmaModel(nn.Module):
def __init__(self, cfg: GemmaConfig) -> None:
super().__init__()
self.cfg = cfg
self.embed_tokens = nn.Embedding(cfg.vocab_size, cfg.hidden_size)
self.layers = nn.ModuleList(
[GemmaTransformerDecoder(cfg, layer_idx) for layer_idx in range(cfg.num_hidden_layers)]
)
self.norm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
kv_cache: Optional[KVCache]) -> torch.Tensor:
output = x * torch.tensor(self.cfg.hidden_size ** 0.5, dtype=x.dtype)
for layer in self.layers:
output = layer(output,
position_ids,
attention_mask,
kv_cache)
output = self.norm(output)
return output
class Gemma(nn.Module):
def __init__(self, cfg: GemmaConfig) -> None:
super().__init__()
self.cfg = cfg
self.model = GemmaModel(cfg)
self.vocab_size = cfg.vocab_size
self.lm_head = nn.Linear(cfg.hidden_size, cfg.vocab_size, bias=False)
def gradient_checkpointing_enabled(self, enabled=False):
for name, module in self.model.named_modules():
if isinstance(module, GemmaTransformerDecoder):
module.gradient_checking = enabled
def tie_weights(self):
self.lm_head.weight = self.model.embed_tokens.weight
def forward(self,
input_embeds: torch.Tensor,
position_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
kv_cache: Optional[KVCache]):
output = self.model(input_embeds,
position_ids,
attention_mask,
kv_cache)
return output, kv_cache |