Spaces:
Runtime error
Runtime error
File size: 5,546 Bytes
d8bb2be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import os
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from .gemma import KVCache
from .paligemma import PaliGemma, PaliGemmaConfig
from typing import Optional
from utils import *
from pathlib import Path
from safetensors import safe_open
def convert_weights_dict(original_weights):
converted_weights = {}
converted_weights['custom_text_proj.lora_A.weight'] = original_weights['base_model.model.custom_text_proj.lora_A.weight']
converted_weights['custom_text_proj.lora_B.weight'] = original_weights['base_model.model.custom_text_proj.lora_B.weight']
for i in range(18):
converted_weights[f'model.language_model.model.layers.{i}.mlp.down_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.down_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.mlp.down_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.down_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.mlp.gate_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.gate_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.mlp.gate_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.gate_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.mlp.up_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.up_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.mlp.up_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.mlp.up_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.q_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.q_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.q_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.q_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.k_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.k_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.k_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.k_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.v_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.v_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.v_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.v_proj.lora_B.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.o_proj.lora_A.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.o_proj.lora_A.weight']
converted_weights[f'model.language_model.model.layers.{i}.self_attn.o_proj.lora_B.weight'] = original_weights[f'base_model.model.model.language_model.model.layers.{i}.self_attn.o_proj.lora_B.weight']
return converted_weights
class ColPali(nn.Module):
def __init__(self, cfg: PaliGemmaConfig):
super().__init__()
self.model = PaliGemma(cfg=cfg)
self.dim = 128
self.custom_text_proj = nn.Linear(self.model.cfg.text_config.hidden_size, self.dim, bias=False)
@staticmethod
def from_pretrained(model_dir, torch_dtype: torch.dtype = torch.float32):
torch.set_default_dtype(torch_dtype)
with open(os.path.join(model_dir, 'config.json'), "r") as f:
model_config = json.loads(f.read())
config = PaliGemmaConfig.from_dict(model_config)
safetensor_files = Path(model_dir).glob("*.safetensors")
weights = {}
for file in safetensor_files:
with safe_open(file, framework='pt', device="cpu") as f:
for key in f.keys():
weights[key] = f.get_tensor(key)
model = ColPali(config)
model.load_state_dict(weights, strict=False)
model.tie_weights()
return model
def load_lora(self, model_dir):
weights = {}
with safe_open(os.path.join(model_dir, "adapter_model.safetensors"), framework="pt", device="cpu") as f:
for key in f.keys():
weights[key] = f.get_tensor(key)
converted_weights = convert_weights_dict(weights)
self.load_state_dict(converted_weights, strict=False)
def tie_weights(self):
self.model.language_model.tie_weights()
def forward(self, *args, **kwargs) -> torch.Tensor:
outputs = self.model(*args, **kwargs)
last_hidden_states = outputs[0]
proj = self.custom_text_proj(last_hidden_states)
# L2 normalization
proj = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
proj = proj * kwargs['attention_mask'].unsqueeze(-1) # (batch_size, sequence_length, dim)
return proj
|