File size: 5,019 Bytes
f0f166f
 
 
 
 
9401db3
f0f166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f70ac2a
f0f166f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9401db3
 
 
 
f0f166f
9401db3
 
 
 
 
 
f0f166f
 
f70ac2a
66c25fa
 
 
f0f166f
9401db3
 
 
 
f70ac2a
9401db3
 
 
 
 
 
 
30c7b4f
9401db3
 
 
 
 
 
 
 
 
 
 
 
 
 
f70ac2a
f0f166f
 
9401db3
f0f166f
 
f70ac2a
 
 
f0f166f
 
 
 
 
 
 
 
 
 
 
 
f70ac2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f166f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import PIL.Image
import torch
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"


class Detector:
    def __init__(self, model_id: str):
        self.device = DEVICE
        self.processor = AutoProcessor.from_pretrained(model_id)
        self.model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(
            self.device
        )

    def detect(
        self,
        image: PIL.Image.Image,
        text_labels: list[str],
        threshold: float = 0.4,
    ):
        inputs = self.processor(
            images=image, text=[text_labels], return_tensors="pt"
        ).to(self.device)

        with torch.no_grad():
            outputs = self.model(**inputs)

        results = self.processor.post_process_grounded_object_detection(
            outputs, threshold=threshold, target_sizes=[(image.height, image.width)]
        )

        detections = []
        result = results[0]
        for box, score, labels in zip(
            result["boxes"], result["scores"], result["text_labels"]
        ):
            box = [round(x, 2) for x in box.tolist()]
            detections.append(
                dict(
                    label=labels,
                    confidence=round(score.item(), 3),
                    box=box,
                )
            )
        return detections


models = dict(
    tiny=Detector("iSEE-Laboratory/llmdet_tiny"),
    base=Detector("iSEE-Laboratory/llmdet_base"),
    large=Detector("iSEE-Laboratory/llmdet_large"),
)


def _postprocess(detections):
    annotations = []
    for detection in detections:
        box = detection["box"]
        mask = (int(box[0]), int(box[1]), int(box[2]), int(box[3]))
        label = f"{detection['label']} ({detection['confidence']:.2f})"
        annotations.append((mask, label))
    return annotations


def detect_objects(image, labels, confidence_threshold):
    labels = [label.strip() for label in labels.split(",")]

    detections = []
    for model_name in models.keys():
        detection = models[model_name].detect(
            image,
            labels,
            threshold=confidence_threshold,
        )
        detections.append(_postprocess(detection))

    return tuple((image, det) for det in detections)


with gr.Blocks(delete_cache=(5, 10)) as demo:
    gr.Markdown(
        "# LLMDet Arena ✨\n ### [Paper](https://arxiv.org/abs/2501.18954) - [Repository](https://github.com/iSEE-Laboratory/LLMDet)"
    )

    with gr.Row():
        with gr.Column():
            gr.Markdown("## Input Image")

            image_input = gr.Image(type="pil", image_mode="RGB", format="jpeg")

        with gr.Column():
            gr.Markdown("## Settings")

            confidence_slider = gr.Slider(
                0,
                1,
                value=0.3,
                step=0.01,
                interactive=True,
                label="Confidence threshold:",
            )

            labels = ["a cat", "a remote control"]

            text_input = gr.Textbox(
                label="Object labels (comma separated):",
                placeholder=",".join(labels),
                lines=1,
            )

    with gr.Row():
        detect_button = gr.Button("Detect Objects")

    with gr.Row():
        gr.Markdown("## Output Annotated Images")

    with gr.Row():
        output_annotated_image_tiny = gr.AnnotatedImage(label="TINY", format="jpeg")
        output_annotated_image_base = gr.AnnotatedImage(label="BASE", format="jpeg")
        output_annotated_image_large = gr.AnnotatedImage(label="LARGE", format="jpeg")

    # Connect the button to the detection function
    detect_button.click(
        fn=detect_objects,
        inputs=[image_input, text_input, confidence_slider],
        outputs=[
            output_annotated_image_tiny,
            output_annotated_image_base,
            output_annotated_image_large,
        ],
    )

    with gr.Row():
        gr.Markdown("## Examples")

    with gr.Row():
        gr.Examples(
            examples=[
                [
                    "http://images.cocodataset.org/val2017/000000039769.jpg",
                    "a cat, a remote control",
                    0.3,
                ],
                [
                    "http://images.cocodataset.org/val2017/000000370486.jpg",
                    "a person",
                    0.3,
                ],
                [
                    "http://images.cocodataset.org/train2017/000000345263.jpg",
                    "a red apple, a green apple",
                    0.3,
                ],
            ],
            inputs=[image_input, text_input, confidence_slider],
            outputs=[
                output_annotated_image_tiny,
                output_annotated_image_base,
                output_annotated_image_large,
            ],
            fn=detect_objects,
            cache_examples=True,
        )


if __name__ == "__main__":
    demo.launch()