File size: 2,483 Bytes
d347764
 
 
 
9fd1f21
 
d347764
 
 
9fd1f21
 
 
d347764
9fd1f21
d347764
9fd1f21
d347764
9fd1f21
 
 
d347764
9fd1f21
 
 
 
 
 
d347764
 
 
 
 
 
9fd1f21
d347764
 
f805e49
 
9fd1f21
 
f805e49
 
 
c737803
 
 
d347764
226ec3a
d347764
f805e49
 
d347764
c737803
 
 
 
 
9fd1f21
c737803
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
import numpy as np
import torch

from transformers import AutoTokenizer, VitsModel
from transformers import pipeline

device = "cuda:0" if torch.cuda.is_available() else "cpu"

# Translate audio to russian text
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device)
translator_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")

def translate(audio, translator_to_ru: pipeline = translator_to_ru):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
    return translator_to_ru(outputs['text'])[0]['translation_text']

# Text to russian speech
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")

def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model):
    inputs = tokenizer(text, return_tensors="pt")
    # print(inputs)
    with torch.no_grad():
        output = model(**inputs).waveform
    return output.cpu()


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech[0]


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's
[mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(source="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./test_2.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()