|
|
|
|
|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
|
|
from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool |
|
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server |
|
|
|
|
|
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. |
|
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:". |
|
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings. |
|
If you're asked for a number, don’t use commas or units like $ or %, unless specified. |
|
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise. |
|
|
|
Tool Use Guidelines: |
|
1. Do **not** use any tools outside of the provided tools list. |
|
2. Always use **only one tool at a time** in each step of your execution. |
|
3. If the question refers to a `.py` file or uploaded Python script, use **RunPythonFileTool** to execute it and base your answer on its output. |
|
4. If the question looks reversed (starts with a period or reads backward), first use **ReverseTextTool** to reverse it, then process the question. |
|
5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using **ReverseTextTool**. |
|
6. When dealing with Excel files, prioritize using the **excel** tool over writing code in **terminal-controller**. |
|
7. If you need to download a file, always use the **download_server** tool and save it to the correct path. |
|
8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools. |
|
9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible. |
|
""" |
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class MyAgent: |
|
def __init__(self): |
|
gemini_api_key = os.getenv("GEMINI_API_KEY") |
|
if not gemini_api_key: |
|
raise ValueError("GEMINI_API_KEY not set in environment variables.") |
|
|
|
self.model = LiteLLMModel( |
|
model_id="gemini/gemini-2.0-flash-lite", |
|
api_key=gemini_api_key, |
|
system_prompt=SYSTEM_PROMPT |
|
) |
|
|
|
self.agent = CodeAgent( |
|
tools=[ |
|
DuckDuckGoSearchTool(), |
|
ReverseTextTool, |
|
RunPythonFileTool, |
|
download_server |
|
], |
|
model=self.model, |
|
add_base_tools=True, |
|
) |
|
|
|
def __call__(self, question: str) -> str: |
|
return self.agent.run(question) |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = profile.username |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please login to Hugging Face.", None |
|
|
|
questions_url = f"{DEFAULT_API_URL}/questions" |
|
submit_url = f"{DEFAULT_API_URL}/submit" |
|
|
|
try: |
|
agent = MyAgent() |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
return "Agent did not return any answers.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": profile.username.strip(), |
|
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", |
|
"answers": answers_payload |
|
} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Clone this space and configure your Gemini API key. |
|
2. Log in to Hugging Face. |
|
3. Run your agent on evaluation tasks and submit answers. |
|
""") |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Results", wrap=True) |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
print("🔧 App starting...") |
|
demo.launch(debug=True, share=False) |
|
|
|
|
|
|
|
|