File size: 8,272 Bytes
0770449
9ef164b
0770449
 
c4cd469
c18ec7e
 
 
 
 
0770449
f2fde57
0770449
 
fe4b5f1
cb776ef
3c4d8f2
c18ec7e
0770449
 
1d1dd8d
0770449
 
 
 
8c08762
0770449
c18ec7e
 
 
 
 
 
8a26b55
c18ec7e
3c4d8f2
ba93db8
5873d33
ba93db8
ee52019
c18ec7e
 
 
 
 
 
 
 
 
 
d5863e7
 
 
 
 
 
 
 
0770449
 
 
 
 
 
 
 
 
 
b34b7d7
0770449
 
8a26b55
0770449
3c4d8f2
 
 
 
 
 
 
 
42d6b9c
fe4b5f1
cb776ef
fe4b5f1
cb776ef
 
c77782f
fe4b5f1
0770449
 
 
 
 
 
fe4b5f1
42d6b9c
0770449
 
 
8f1d4f2
6229292
b34b7d7
1016fdb
8f1d4f2
 
9ef164b
2c3245b
b1f4ef7
 
 
 
2c3245b
 
 
 
 
d13603d
2c3245b
d13603d
2c3245b
 
b1f4ef7
2c3245b
 
 
 
 
5f76223
2c3245b
 
5f76223
2c3245b
 
 
 
 
 
b1f4ef7
2c3245b
 
 
 
 
 
 
 
b1f4ef7
cb776ef
2c3245b
 
d13603d
b606edb
cb776ef
2c3245b
 
 
ea4ffd3
 
9ef164b
 
b1f4ef7
9ef164b
b1f4ef7
ea4ffd3
9ef164b
 
 
2ea73cf
b1f4ef7
9ef164b
 
 
 
 
 
 
 
 
 
b1f4ef7
 
 
 
 
 
 
2ea73cf
b1f4ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb7bd29
177debf
 
 
 
 
 
 
 
8c08762
 
177debf
 
 
f2fde57
 
 
 
 
 
 
 
 
 
 
 
 
177debf
 
8c08762
 
 
 
 
 
 
 
 
177debf
d5863e7
 
 
ba93db8
3c4d8f2
ba93db8
d5863e7
 
3c4d8f2
 
 
d5863e7
8a26b55
3c4d8f2
8a26b55
3c4d8f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import glob
import shutil
import subprocess
from typing import Any, Dict, List

from fastapi import FastAPI, HTTPException, UploadFile, WebSocket
from fastapi.staticfiles import StaticFiles

from pydantic import BaseModel

# import torch
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.base import BaseCallbackHandler, AsyncCallbackHandler
from langchain.schema import LLMResult

# from langchain.embeddings import HuggingFaceEmbeddings
from load_models import load_model

# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma

from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY

class Predict(BaseModel):
    prompt: str

class Delete(BaseModel):
    filename: str

class MyCustomHandler(BaseCallbackHandler):
    def on_llm_new_token(self, token: str, **kwargs) -> None:
        global websocketClient

        websocketClient.send_text(f"Message text was: {token}")

        print(f" token: {token}")

    async def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        class_name = serialized["name"]
        print("start")

    async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        print("finish")

# if torch.backends.mps.is_available():
#     DEVICE_TYPE = "mps"
# elif torch.cuda.is_available():
#     DEVICE_TYPE = "cuda"
# else:
#     DEVICE_TYPE = "cpu"

DEVICE_TYPE = "cuda"
SHOW_SOURCES = True

EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})

# load the vectorstore
DB = Chroma(
    persist_directory=PERSIST_DIRECTORY,
    embedding_function=EMBEDDINGS,
    client_settings=CHROMA_SETTINGS,
)

RETRIEVER = DB.as_retriever()

LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks=[MyCustomHandler()])

template = """you are a helpful, respectful and honest assistant.
Your name is Katara llma. You should only use the source documents provided to answer the questions.
You should only respond only topics that contains in documents use to training.
Use the following pieces of context to answer the question at the end.
Always answer in the most helpful and safe way possible.
If you don't know the answer to a question, just say that you don't know, don't try to make up an answer, don't share false information.
Use 15 sentences maximum. Keep the answer as concise as possible.
Always say "thanks for asking!" at the end of the answer.
Context: {history} \n {context}
Question: {question}
"""

memory = ConversationBufferMemory(input_key="question", memory_key="history")

QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)

QA = RetrievalQA.from_chain_type(
    llm=LLM,
    chain_type="stuff",
    retriever=RETRIEVER,
    return_source_documents=SHOW_SOURCES,
    chain_type_kwargs={
        "prompt": QA_CHAIN_PROMPT,
        "memory": memory
    },
)

app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")

app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")

@api_app.get("/training")
def run_ingest_route():
    global DB
    global RETRIEVER
    global QA

    try:
        if os.path.exists(PERSIST_DIRECTORY):
            try:
                shutil.rmtree(PERSIST_DIRECTORY)
            except OSError as e:
                raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
        else:
            raise HTTPException(status_code=500, detail="The directory does not exist")

        run_langest_commands = ["python", "ingest.py"]

        if DEVICE_TYPE == "cpu":
            run_langest_commands.append("--device_type")
            run_langest_commands.append(DEVICE_TYPE)

        result = subprocess.run(run_langest_commands, capture_output=True)

        if result.returncode != 0:
            raise HTTPException(status_code=400, detail="Script execution failed: {}")

        # load the vectorstore
        DB = Chroma(
            persist_directory=PERSIST_DIRECTORY,
            embedding_function=EMBEDDINGS,
            client_settings=CHROMA_SETTINGS,
        )

        RETRIEVER = DB.as_retriever()

        QA = RetrievalQA.from_chain_type(
            llm=LLM,
            chain_type="stuff",
            retriever=RETRIEVER,
            return_source_documents=SHOW_SOURCES,
            chain_type_kwargs={
                "prompt": QA_CHAIN_PROMPT,
                "memory": memory
            },
        )


        return {"response": "The training was successfully completed"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")

@api_app.get("/api/files")
def get_files():
    upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
    files = glob.glob(os.path.join(upload_dir, '*'))

    return {"directory": upload_dir, "files": files}

@api_app.delete("/api/delete_document")
def delete_source_route(data: Delete):
    filename = data.filename
    path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
    file_to_delete = f"{path_source_documents}/{filename}"

    if os.path.exists(file_to_delete):
        try:
            os.remove(file_to_delete)
            print(f"{file_to_delete} has been deleted.")

            return {"message": f"{file_to_delete} has been deleted."}
        except OSError as e:
            raise HTTPException(status_code=400, detail=print(f"error: {e}."))
    else:
         raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))

@api_app.post('/predict')
async def predict(data: Predict):
    global QA
    user_prompt = data.prompt
    if user_prompt:
        res = QA(user_prompt)

        answer, docs = res["result"], res["source_documents"]

        prompt_response_dict = {
            "Prompt": user_prompt,
            "Answer": answer,
        }

        prompt_response_dict["Sources"] = []
        for document in docs:
            prompt_response_dict["Sources"].append(
                (os.path.basename(str(document.metadata["source"])), str(document.page_content))
            )

        return {"response": prompt_response_dict}
    else:
        raise HTTPException(status_code=400, detail="Prompt Incorrect")

@api_app.post("/save_document/")
async def create_upload_file(file: UploadFile):
    # Get the file size (in bytes)
    file.file.seek(0, 2)
    file_size = file.file.tell()

    # move the cursor back to the beginning
    await file.seek(0)

    if file_size > 10 * 1024 * 1024:
        # more than 10 MB
        raise HTTPException(status_code=400, detail="File too large")

    content_type = file.content_type

    if content_type not in [
        "text/plain",
        "text/markdown",
        "text/x-markdown",
        "text/csv",
        "application/msword",
        "application/pdf",
        "application/vnd.ms-excel",
        "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
        "text/x-python",
        "application/x-python-code"]:
        raise HTTPException(status_code=400, detail="Invalid file type")

    upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
    if not os.path.exists(upload_dir):
        os.makedirs(upload_dir)

    dest = os.path.join(upload_dir, file.filename)

    with open(dest, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    return {"filename": file.filename}

@api_app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    global QA
    global websocketClient

    await websocket.accept()
    while True:
        global websocketClient
        websocketClient = websocket;

        data = await websocket.receive_text()

        QA(data)

        await websocket.send_text(f"Message text was:")