Spaces:
Paused
Paused
File size: 8,492 Bytes
0770449 9ef164b 0770449 27e6a14 5d66516 c18ec7e d815dea c18ec7e 5d66516 c18ec7e 0770449 27e6a14 0770449 2a13ed4 c18ec7e 27e6a14 0770449 0b74b4d 1d1dd8d 0770449 911d720 0770449 c18ec7e 9f4aea3 0770449 27e6a14 0770449 b0d4d1d cb776ef b663f39 fe4b5f1 0770449 0b74b4d 0770449 5073361 d2ccd1f 5d66516 8f1d4f2 6229292 b34b7d7 1016fdb 8f1d4f2 9ef164b 2c3245b b1f4ef7 2c3245b d13603d 2c3245b d13603d 2c3245b b1f4ef7 9f4aea3 2c3245b 5f76223 2c3245b 5f76223 2c3245b b1f4ef7 2c3245b 27e6a14 cb776ef 2c3245b d13603d cb776ef 2c3245b ea4ffd3 9ef164b b1f4ef7 9ef164b b1f4ef7 ea4ffd3 9ef164b 2ea73cf b1f4ef7 9ef164b b1f4ef7 70e00d3 b1f4ef7 70e00d3 d2ccd1f 70e00d3 b1f4ef7 eb7bd29 177debf 8c08762 177debf f2fde57 177debf 8c08762 177debf d5863e7 9117ff3 b0d4d1d 598b96c 5d66516 9117ff3 5d66516 9117ff3 ef75206 d815dea 5d66516 9b024c3 d2ccd1f 5d66516 9117ff3 bd32b51 d815dea 9117ff3 5d66516 9117ff3 5d66516 9117ff3 ef75206 48c871b 9117ff3 b0d4d1d 598b96c 48c871b 9117ff3 48c871b f1368ae 9117ff3 48c871b b21e4ba 48c871b 9117ff3 48c871b 9117ff3 48c871b 9117ff3 48c871b 9117ff3 48c871b 9117ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import glob
import shutil
import subprocess
import torch
import json
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
from fastapi.staticfiles import StaticFiles
from websocket.socketManager import WebSocketManager
from pydantic import BaseModel
# langchain
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from langchain.vectorstores import Chroma
from prompt_template_utils import get_prompt_template
from load_models import load_model
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES, CONTEXT_WINDOW_SIZE, MAX_NEW_TOKENS
class Predict(BaseModel):
prompt: str
class Delete(BaseModel):
filename: str
# if torch.backends.mps.is_available():
# DEVICE_TYPE = "mps"
# elif torch.cuda.is_available():
# DEVICE_TYPE = "cuda"
# else:
# DEVICE_TYPE = "cpu"
DEVICE_TYPE = "cuda"
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
def sendPromptChain(QA, user_prompt):
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return prompt_response_dict;
socket_manager = WebSocketManager()
app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")
app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")
@api_app.get("/training")
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
# if DEVICE_TYPE == "cpu":
# run_langest_commands.append("--device_type")
# run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
return {"response": "The training was successfully completed"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.get("/api/files")
def get_files():
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
files = glob.glob(os.path.join(upload_dir, '*'))
return {"directory": upload_dir, "files": files}
@api_app.delete("/api/delete_document")
def delete_source_route(data: Delete):
filename = data.filename
path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
file_to_delete = f"{path_source_documents}/{filename}"
if os.path.exists(file_to_delete):
try:
os.remove(file_to_delete)
print(f"{file_to_delete} has been deleted.")
return {"message": f"{file_to_delete} has been deleted."}
except OSError as e:
raise HTTPException(status_code=400, detail=print(f"error: {e}."))
else:
raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))
@api_app.post('/predict')
def predict(data: Predict):
global QA
try:
user_prompt = data.prompt
if user_prompt:
prompt_response_dict = sendPromptChain(QA, user_prompt)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.post("/save_document/")
async def create_upload_file(file: UploadFile):
# Get the file size (in bytes)
file.file.seek(0, 2)
file_size = file.file.tell()
# move the cursor back to the beginning
await file.seek(0)
if file_size > 10 * 1024 * 1024:
# more than 10 MB
raise HTTPException(status_code=400, detail="File too large")
content_type = file.content_type
if content_type not in [
"text/plain",
"text/markdown",
"text/x-markdown",
"text/csv",
"application/msword",
"application/pdf",
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/x-python",
"application/x-python-code"]:
raise HTTPException(status_code=400, detail="Invalid file type")
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
dest = os.path.join(upload_dir, file.filename)
with open(dest, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return {"filename": file.filename}
@api_app.websocket("/ws/{user_id}")
async def websocket_endpoint_student(websocket: WebSocket, user_id: str):
global QA
message = {
"message": f"Student {user_id} connected"
}
await socket_manager.add_user_to_room(user_id, websocket)
await socket_manager.broadcast_to_room(user_id, json.dumps(message))
try:
while True:
data = await websocket.receive_text()
prompt_response_dict = sendPromptChain(QA, data)
await socket_manager.broadcast_to_room(user_id, json.dumps(prompt_response_dict))
except WebSocketDisconnect:
await socket_manager.remove_user_from_room(user_id, websocket)
message = {
"message": f"Student {user_id} disconnected"
}
await socket_manager.broadcast_to_room(user_id, json.dumps(message))
except RuntimeError as error:
print(error)
@api_app.websocket("/ws/{room_id}/{user_id}")
async def websocket_endpoint_room(websocket: WebSocket, room_id: str, user_id: str):
global QA
message = {
"message": f"Student {user_id} connected to the classroom"
}
await socket_manager.add_user_to_room(room_id, websocket)
await socket_manager.broadcast_to_room(room_id, json.dumps(message))
try:
while True:
data = await websocket.receive_text()
prompt_response_dict = sendPromptChain(QA, data)
await socket_manager.broadcast_to_room(room_id, json.dumps(prompt_response_dict))
except WebSocketDisconnect:
await socket_manager.remove_user_from_room(room_id, websocket)
message = {
"message": f"Student {user_id} disconnected from room - {room_id}"
}
await socket_manager.broadcast_to_room(room_id, json.dumps(message))
except RuntimeError as error:
print(error)
|