File size: 2,496 Bytes
b531b23
 
 
 
 
0651cd2
b531b23
 
 
364500e
 
 
b531b23
 
 
d588c88
b531b23
 
 
 
 
 
 
 
6573ffe
 
b531b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35fc364
b531b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508598a
fabe0f5
5f035df
b531b23
 
 
 
 
 
0651cd2
 
 
364500e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import gradio as gr
import copy
import time
import llama_cpp
import ingest
from llama_cpp import Llama
from huggingface_hub import hf_hub_download  

import run_localGPT_API


llm = Llama(
    model_path=hf_hub_download(
        repo_id=os.environ.get("REPO_ID", "TheBloke/Llama-2-7b-Chat-GGUF"),
        filename=os.environ.get("MODEL_FILE", "llama-2-7b-chat.Q4_K_M.gguf"),
    ),
    n_ctx=2048,
    n_gpu_layers=50, # change n_gpu_layers if you have more or less VRAM 
) 

history = []

system_message = """
you are a helpful, respectful and honest assistant. you should only respond to the following topics: water, climate, global warming, NASA data and geography. Always answer in the most helpful and safe way possible.  Your answers should not include harmful, unethical, racist, sexist, toxic, dangerous or illegal content. Make sure that your answers are socially unbiased and positive in nature, as well as sticking to the topics of water, climate, global warming, NASA data and geography.
If a question doesn't make sense or isn't factually coherent, explain that only questions on the topics of water, climate, global warming, NASA data and geography are accepted. If you don't know the answer to a question, don't share false information.
"""


def generate_text(message, history):
    temp = ""
    input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n "
    for interaction in history:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    output = llm(
        input_prompt,
        temperature=0.15,
        top_p=0.1,
        top_k=40, 
        repeat_penalty=1.1,
        max_tokens=1024,
        stop=[
            "<|prompter|>",
            "<|endoftext|>",
            "<|endoftext|> \n",
            "ASSISTANT:",
            "USER:",
            "SYSTEM:",
        ],
        stream=True,
    )
    for out in output:
        stream = copy.deepcopy(out)
        temp += stream["choices"][0]["text"]
        yield temp

    history = ["init", input_prompt]


demo = gr.ChatInterface(
    generate_text,
    title="Katara LLM",
    description="LLM of project https://katara.earth/",
    examples=["Show me all about water"],
    cache_examples=True,
    retry_btn=None,
    undo_btn="Delete Previous",
    clear_btn="Clear",
)
demo.queue(concurrency_count=1, max_size=5)

demo.launch()

ingest.main()
run_localGPT_API.main()