Spaces:
Paused
Paused
File size: 7,475 Bytes
36d73c0 27e6a14 0770449 9ef164b 0770449 27e6a14 c18ec7e d815dea c18ec7e 0770449 27e6a14 0770449 2a13ed4 c18ec7e 27e6a14 0770449 0b74b4d 1d1dd8d 0770449 27e6a14 0770449 c18ec7e 27e6a14 0770449 27e6a14 0770449 36d73c0 cb776ef 0b74b4d fe4b5f1 0770449 0b74b4d 0770449 8f1d4f2 6229292 b34b7d7 1016fdb 8f1d4f2 9ef164b 2c3245b b1f4ef7 2c3245b d13603d 2c3245b d13603d 2c3245b b1f4ef7 2c3245b 5f76223 2c3245b 5f76223 2c3245b b1f4ef7 2c3245b 27e6a14 cb776ef 2c3245b d13603d cb776ef 2c3245b ea4ffd3 9ef164b b1f4ef7 9ef164b b1f4ef7 ea4ffd3 9ef164b 2ea73cf b1f4ef7 9ef164b b1f4ef7 70e00d3 b1f4ef7 70e00d3 2ea73cf 70e00d3 b1f4ef7 70e00d3 b1f4ef7 eb7bd29 177debf 8c08762 177debf f2fde57 177debf 8c08762 177debf d5863e7 abff149 42b3dea ba93db8 d5863e7 ef75206 d815dea 9b024c3 bd32b51 d815dea ef75206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from typing import Any, Dict, Union
import os
import glob
import shutil
import subprocess
import torch
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
# langchain
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from langchain.vectorstores import Chroma
from prompt_template_utils import get_prompt_template
from load_models import load_model
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES
class Predict(BaseModel):
prompt: str
class Delete(BaseModel):
filename: str
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks=[])
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=True)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")
app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")
@api_app.get("/training")
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
return {"response": "The training was successfully completed"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.get("/api/files")
def get_files():
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
files = glob.glob(os.path.join(upload_dir, '*'))
return {"directory": upload_dir, "files": files}
@api_app.delete("/api/delete_document")
def delete_source_route(data: Delete):
filename = data.filename
path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
file_to_delete = f"{path_source_documents}/{filename}"
if os.path.exists(file_to_delete):
try:
os.remove(file_to_delete)
print(f"{file_to_delete} has been deleted.")
return {"message": f"{file_to_delete} has been deleted."}
except OSError as e:
raise HTTPException(status_code=400, detail=print(f"error: {e}."))
else:
raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))
@api_app.post('/predict')
def predict(data: Predict):
global QA
try:
user_prompt = data.prompt
if user_prompt:
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.post("/save_document/")
async def create_upload_file(file: UploadFile):
# Get the file size (in bytes)
file.file.seek(0, 2)
file_size = file.file.tell()
# move the cursor back to the beginning
await file.seek(0)
if file_size > 10 * 1024 * 1024:
# more than 10 MB
raise HTTPException(status_code=400, detail="File too large")
content_type = file.content_type
if content_type not in [
"text/plain",
"text/markdown",
"text/x-markdown",
"text/csv",
"application/msword",
"application/pdf",
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/x-python",
"application/x-python-code"]:
raise HTTPException(status_code=400, detail="Invalid file type")
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
dest = os.path.join(upload_dir, file.filename)
with open(dest, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return {"filename": file.filename}
@api_app.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket, client_id: str):
global QA
await websocket.accept()
try:
while True:
user_prompt = await websocket.receive_text()
response = QA(inputs=user_prompt, return_only_outputs=True, tags=f'{client_id}', include_run_info=True)
answer, docs = response["result"], response["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
await websocket.send_json(prompt_response_dict)
except WebSocketDisconnect:
print('disconnect')
except RuntimeError as error:
print(error)
|