Spaces:
Paused
Paused
File size: 8,294 Bytes
36d73c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from typing import Any, Dict, List, Union
import os
import glob
import shutil
import subprocess
import redis
import torch
import concurrent.futures
import json
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
# langchain
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from langchain.vectorstores import Chroma
from prompt_template_utils import get_prompt_template
from load_models import load_model
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES
class Predict(BaseModel):
prompt: str
class Delete(BaseModel):
filename: str
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS)
RETRIEVER = DB.as_retriever()
redisClient = redis.Redis(host='localhost', port=6379, db=0)
class MyCustomSyncHandler(BaseCallbackHandler):
def __init__(self, redisClient):
self.message = ''
self.redisClient = redisClient
def on_llm_new_token(self, token: str, **kwargs) -> Any:
self.message += token
self.redisClient.publish(f'{kwargs["tags"][0]}', self.message)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> Any:
print("on_llm_end end")
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> Any:
print("on_llm_error end")
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> Any:
print("on_chain_end end")
self.redisClient.publish(f'{kwargs["tags"][0]}', 'end')
handleCallback = MyCustomSyncHandler(redisClient)
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks=[handleCallback])
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=True)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")
app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")
@api_app.get("/training")
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
return {"response": "The training was successfully completed"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.get("/api/files")
def get_files():
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
files = glob.glob(os.path.join(upload_dir, '*'))
return {"directory": upload_dir, "files": files}
@api_app.delete("/api/delete_document")
def delete_source_route(data: Delete):
filename = data.filename
path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
file_to_delete = f"{path_source_documents}/{filename}"
if os.path.exists(file_to_delete):
try:
os.remove(file_to_delete)
print(f"{file_to_delete} has been deleted.")
return {"message": f"{file_to_delete} has been deleted."}
except OSError as e:
raise HTTPException(status_code=400, detail=print(f"error: {e}."))
else:
raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))
@api_app.post('/predict')
async def predict(data: Predict):
global QA
user_prompt = data.prompt
if user_prompt:
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
@api_app.post("/save_document/")
async def create_upload_file(file: UploadFile):
# Get the file size (in bytes)
file.file.seek(0, 2)
file_size = file.file.tell()
# move the cursor back to the beginning
await file.seek(0)
if file_size > 10 * 1024 * 1024:
# more than 10 MB
raise HTTPException(status_code=400, detail="File too large")
content_type = file.content_type
if content_type not in [
"text/plain",
"text/markdown",
"text/x-markdown",
"text/csv",
"application/msword",
"application/pdf",
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/x-python",
"application/x-python-code"]:
raise HTTPException(status_code=400, detail="Invalid file type")
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
dest = os.path.join(upload_dir, file.filename)
with open(dest, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return {"filename": file.filename}
@api_app.websocket("/ws/{client_id}")
async def websocket_endpoint(websocket: WebSocket, client_id: int):
global QA
await websocket.accept()
try:
while True:
prompt = await websocket.receive_text()
pubsub = redisClient.pubsub()
pubsub.subscribe(f'{client_id}')
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.submit(QA(inputs=prompt, return_only_outputs=True, tags=f'{client_id}', include_run_info=True, callbacks=[handleCallback]))
for item in pubsub.listen():
if item["type"] == "message":
message = item["data"].decode('utf-8')
if message == "end": pubsub.unsubscribe({client_id})
await websocket.send_text(f'{message}')
except WebSocketDisconnect:
print('disconnect')
except RuntimeError as error:
print(error)
|