Spaces:
Paused
Paused
File size: 5,840 Bytes
d233be3 20fbd22 d233be3 7bdad41 d233be3 20fbd22 d233be3 20fbd22 d233be3 20fbd22 d233be3 20fbd22 d233be3 20fbd22 d233be3 20fbd22 d233be3 20fbd22 d233be3 fd3d55a d233be3 7bdad41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import logging
import os
import shutil
import subprocess
import torch
from flask import Flask, jsonify, request, render_template
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from werkzeug.utils import secure_filename
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# EMBEDDINGS = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# if os.path.exists(PERSIST_DIRECTORY):
# try:
# shutil.rmtree(PERSIST_DIRECTORY)
# except OSError as e:
# print(f"Error: {e.filename} - {e.strerror}.")
# else:
# print("The directory does not exist")
# run_langest_commands = ["python", "ingest.py"]
# if DEVICE_TYPE == "cpu":
# run_langest_commands.append("--device_type")
# run_langest_commands.append(DEVICE_TYPE)
# result = subprocess.run(run_langest_commands, capture_output=True)
# if result.returncode != 0:
# raise FileNotFoundError(
# "No files were found inside SOURCE_DOCUMENTS, please put a starter file inside before starting the API!"
# )
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
app = Flask(__name__)
@app.route("/")
def index():
return render_template("home.html")
@app.route("/api/delete_source", methods=["GET"])
def delete_source_route():
folder_name = "SOURCE_DOCUMENTS"
if os.path.exists(folder_name):
shutil.rmtree(folder_name)
os.makedirs(folder_name)
return jsonify({"message": f"Folder '{folder_name}' successfully deleted and recreated."})
@app.route("/api/save_document", methods=["GET", "POST"])
def save_document_route():
if "document" not in request.files:
return "No document part", 400
file = request.files["document"]
if file.filename == "":
return "No selected file", 400
if file:
filename = secure_filename(file.filename)
folder_path = "SOURCE_DOCUMENTS"
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
file.save(file_path)
return "File saved successfully", 200
@app.route("/api/run_ingest", methods=["GET"])
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
print(f"Error: {e.filename} - {e.strerror}.")
else:
print("The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
return "Script execution failed: {}".format(result.stderr.decode("utf-8")), 500
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
},
)
return "Script executed successfully: {}".format(result.stdout.decode("utf-8")), 200
except Exception as e:
return f"Error occurred: {str(e)}", 500
@app.route("/api/prompt_route", methods=["GET", "POST"])
def prompt_route():
global QA
user_prompt = request.form.get("user_prompt")
if user_prompt:
# print(f'User Prompt: {user_prompt}')
# Get the answer from the chain
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return jsonify(prompt_response_dict), 200
else:
return "No user prompt received", 400
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5110) |